# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5325 | 0 | 1.0000 | Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year. Tetracycline-resistant bacteria and genes encoding tetracycline resistance are common in anthropogenic environments. We studied how wastewater treatment affects the prevalence and concentration of two genes, tetA and tetB, that encode resistance to tetracycline. Using real-time polymerase chain reaction (PCR) we analysed wastewater samples collected monthly for one year at eight key-sites in a full-scale municipal wastewater treatment plant (WWTP). We detected tetA and tetB at each sampling site and the concentration of both genes, expressed per wastewater volume or per total-DNA, decreased over the treatment process. The reduction of tetA and tetB was partly the result of the sedimentation process. The ratio of tetA and tetB, respectively, to total DNA was lower in or after the biological processes. Taken together our data show that tetracycline resistance genes occur throughout the WWTP, and that the concentrations are reduced under conventional operational strategies. | 2010 | 20154388 |
| 7183 | 1 | 0.9999 | Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. | 2014 | 25064719 |
| 5326 | 2 | 0.9999 | The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla (SHV-1), bla (TEM-1), msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC(90) values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance. | 2024 | 39816252 |
| 5323 | 3 | 0.9999 | Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence. | 2014 | 24927359 |
| 3432 | 4 | 0.9999 | Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. | 2015 | 25957255 |
| 3678 | 5 | 0.9999 | Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms. Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters) in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/10(6) 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8 × 10(4) copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances. | 2014 | 25247418 |
| 7123 | 6 | 0.9999 | Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure. | 2019 | 30878661 |
| 7094 | 7 | 0.9999 | Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. | 2014 | 24984233 |
| 3420 | 8 | 0.9999 | Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. This work monitored the effect of a municipal and a village wastewater treatment plant (WWTP) technology on the fate of beta-lactam resistance genes in bacterial populations in different phases of the wastewater treatment process. In case of the municipal WWTP1, the bacteria possessing a high ampicillin resistance (minimal inhibitory concentration (MIC) values of 20 mg/mL) accumulated in the sedimentation tank, which was accompanied with a higher concentration of ampicillin in the wastewater samples (28.09 ng/L) and an increase in the relative abundance of the blaTEM gene in the bacterial population. However, an opposite trend was revealed with the blaNDM-1 gene, making the sedimentation processes of WWTP1 crucial only for the accumulation of the blaTEM gene. Similarly, the comparison with the WWTP2 showed that the accumulation of the ampicillin resistance in bacterial population probably depended on the WWTP technology and wastewater composition. Out of the four tested resistance genes (blaTEM, blaKPC, blaNDM-1, and blaOXA-48), blaTEM and blaNDM-1 genes were the only two detected in this study. According to NGS analysis of bacterial 16 S rRNA gene, Gammaproteobacteria dominated the ampicillin-resistant bacteria of the WWTP sedimentation tanks. Their relative abundance in the bacterial population also increased during the sedimentation processes in WWTP1. It could indicate the role of the bacterial taxon in ampicillin resistance accumulation in this WWTP and show that only 9.29% of the original bacterial population from the nitrification tank is involved in the documented shifts in beta-lactam resistance of the bacterial population. | 2021 | 33971421 |
| 7093 | 9 | 0.9999 | Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent. | 2016 | 26519797 |
| 5324 | 10 | 0.9999 | Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs. | 2014 | 25084517 |
| 7099 | 11 | 0.9999 | The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment. | 2015 | 25698291 |
| 3423 | 12 | 0.9999 | bla(TEM) and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. Four indicator genes were monitored by quantitative PCR in hospital effluent (HE) and in the raw and treated wastewater of the municipal wastewater treatment plant receiving the hospital discharge. The indicator genes were the class 1 integrase gene intI1, to assess the capacity of bacteria to be involved in horizontal gene transfer processes; bla(TEM), one of the most widespread antibiotic resistance genes in the environment, associated with Enterobacteriaceae; vanA, an antibiotic resistance gene uncommon in the environment and frequent in clinical isolates; and marA, part of a locus related to the stress response in Enterobacteriaceae. Variation in the abundance of these genes was analysed as a function of the type of water, and possible correlations with cultivable bacteria, antimicrobial residue concentrations, and bacterial community composition and structure were analysed. HE was confirmed as an important source of bla(TEM) and vanA genes, and wastewater treatment showed a limited capacity to remove these resistance genes. The genes bla(TEM) and vanA presented the strongest correlations with culturable bacteria, antimicrobial residues and some bacterial populations, representing interesting candidates as indicator genes to monitor resistance in environmental samples. The intI1 gene was the most abundant in all samples, demonstrating that wastewater bacterial populations hold a high potential for gene acquisition. | 2014 | 27873693 |
| 3433 | 13 | 0.9999 | Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene bla(CMY-2) in an activated sludge microcosm. As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene bla(CMY-2) was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of bla(CMY-2) in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it. | 2025 | 39215485 |
| 7186 | 14 | 0.9999 | Removal of selected sulfonamides and sulfonamide resistance genes from wastewater in full-scale constructed wetlands. Sulfonamides are high-consumption antibiotics that reach the aquatic environment. The threat related to their presence in wastewater and the environment is not only associated with their antibacterial properties, but also with risk of the spread of drug resistance in bacteria. Therefore, the aim of this work was to evaluate the occurrence of eight commonly used sulfonamides, sulfonamide resistance genes (sul1-3) and integrase genes intI1-3 in five full-scale constructed wetlands (CWs) differing in design (including hybrid systems) and in the source of wastewater (agricultural drainage, domestic sewage/surface runoff, and animal runs runoff in a zoo). The CWs were located in low-urbanized areas in Poland and in Czechia. No sulfonamides were detected in the CW treating agricultural tile drainage water. In the other four systems, four sulfonamide compounds were detected. Sulfamethoxazole exhibited the highest concentration in those four CWs and its highest was 12,603.23 ± 1000.66 ng/L in a CW treating a mixture of domestic sewage and surface runoff. Despite the high removal efficiencies of sulfamethoxazole in the tested CWs (86 %-99 %), it was still detected in the treated wastewater. The sul1 genes occurred in all samples of raw and treated wastewater and their abundance did not change significantly after the treatment process and it was, predominantly, at the level 10(5) gene copies numbers/mL. Noteworthy, sul2 genes were only found in the influents, and sul3 were not detected. The sulfonamides can be removed in CWs, but their elimination is not complete. However, hybrid CWs treating sewage were superior in decreasing the relative abundance of genes and the concentration of SMX. CWs may play a role in the dissemination of sulfonamide resistance genes of the sul1 type and other determinants of drug resistance, such as the intI1 gene, in the environment, however, the magnitude of this phenomenon is a matter of further research. | 2024 | 38081427 |
| 3520 | 15 | 0.9999 | Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process. The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance. | 2015 | 25424345 |
| 5352 | 16 | 0.9999 | Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments. | 2015 | 25634736 |
| 3676 | 17 | 0.9999 | Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 10(3) to 10(5) orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock. | 2018 | 29469609 |
| 7184 | 18 | 0.9999 | Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant. Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm(2)) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 10(7) copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment. | 2022 | 35060061 |
| 3424 | 19 | 0.9999 | Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. In this study, we quantified eleven antibiotic compounds and nine antibiotic resistance genes (ARGs) in water samples collected upstream and downstream of the discharge point from a municipal wastewater treatment plant (WWTP) into the Ter River. Antibiotics were analyzed by liquid chromatography coupled to mass spectrometry, whereas the concentration of ARGs in bacterial, phage and plasmid DNA fractions was determined by real-time PCR to explore their contribution to environmental antibiotic resistance. WWTP discharges resulted in higher concentrations of antibiotic residues as well as ARGs in water samples collected downstream the impact point. Specifically, genes conferring resistance to macrolides (ermB), fluoroquinolones (qnrS) and tetracyclines (tetW) showed significant differences (p<0.05) between upstream and downstream sites in the three DNA fractions (i.e. bacteria, plasmids and phages). Interestingly, genes conferring resistance to β-lactams (bla(TEM), bla(NDM) and bla(KPC)) and glycopeptides (vanA) only showed significant differences (p<0.05) between upstream and downstream sites in phage and plasmid DNA but not in the bacterial DNA fraction. Our results show for the first time the extent to which phages and plasmids contribute to the mobilization of ARGs in an aquatic environment exposed to chronic antibiotic pollution via WWTP discharges. Accordingly, these mobile genetic elements should be included in further studies to get a global view of the spread of antibiotic resistance. | 2017 | 28551539 |