Further Evidence of Anthropogenic Impact: High Levels of Multiple-Antimicrobial-Resistant Bacteria Found in Neritic-Stage Sea Turtles. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
531801.0000Further Evidence of Anthropogenic Impact: High Levels of Multiple-Antimicrobial-Resistant Bacteria Found in Neritic-Stage Sea Turtles. BACKGROUND/OBJECTIVES: Marine turtles are globally threatened and face daily anthropogenic threats, including pollution. Water pollution from emerging contaminants such as antimicrobials is a major and current environmental concern. METHODS: This study investigated the phenotypic antimicrobial resistance and heavy metal resistance genes of 47 Vibrio isolates from different stages of sea turtles (oceanic stage vs neritic stage) from the Taiwanese coast. RESULTS: The results show that a high proportion (48.9%; 23/47) of the Vibrio species isolated from sea turtles in our study had a multiple antimicrobial resistance (MAR) pattern. It was found that Vibrio spp. isolates with a MAR pattern and those with a MAR index value greater than 0.2 were both more likely to be observed in neritic-stage sea turtles. Furthermore, isolates from neritic-stage sea turtles exhibited greater resistance to the majority of antimicrobials tested (with the exception of beta-lactams and macrolides) than isolates from the oceanic-stage groups. Isolates from neritic sea turtles were found to be more resistant to nitrofurans and aminoglycosides than isolates from oceanic sea turtles. Furthermore, isolates with a MAR pattern (p = 0.010) and those with a MAR index value greater than 0.2 (p = 0.027) were both found to be significantly positively associated with the mercury reductase (merA) gene. CONCLUSIONS: The findings of our study indicate that co-selection of heavy metals and antimicrobial resistance may occur in aquatic bacteria in the coastal foraging habitats of sea turtles in Taiwan.202439596693
282510.9998Taxonomic diversity of antimicrobial-resistant bacteria and genes in the Red Sea coast. Despite development of a record number of recreational sites and industrial zones on the Red Sea coast in the last decade, antibiotic-resistant bacteria in this environment remain largely unexplored. In this study, 16S rDNA sequencing was used to identify bacteria isolated from 12 sediment samples collected from the Red Sea coastal, offshore, and mangroves sites. Quantitative PCR was used to estimate the quantity of antimicrobial resistance genes (ARGs) in genomic DNA in the samples. A total of 470 bacteria were isolated and classified into 137 distinct species, including 10 candidate novel species. Site-specific bacterial communities inhabiting the Red Sea were apparent. Relatively, more resistant isolates were recovered from the coast, and samples from offshore locations contained the most multidrug-resistant bacteria. Eighteen ARGs were detected in this study encoding resistance to aminoglycoside, beta-lactam, sulfonamide, macrolide, quinolone, and tetracycline antibiotics. The qnrS, aacC2, ermC, and bla(TEM-1) genes were commonly found in coastal and offshore sites. Relatively higher abundance of ARGs, including aacC2 and aacC3, were found in the apparently anthropogenically contaminated (beach) samples from coast compared to other collected samples. In conclusion, a relative increase in antimicrobial-resistant isolates was found in sediment samples from the Red Sea, compared to other studies. Anthropogenic activities likely contribute to this increase in bacterial diversity and ARGs.201931063890
530920.9998Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria, and thereby disseminating antimicrobial resistance genes (ARGs). In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals) and 12 sites (6 sites at city canals; 2 sites at chicken farms; 2 sites at pig farms; and 2 samples from sites at pig farms, which were subsequently treated at a biogas plant) in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Notably, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp.; however, both the concentration and rates of tetracycline resistance in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments.201627433156
308630.9997Seasonal variation, virulence gene and antibiotic resistance of Vibrio in a semi-enclosed bay with mariculture (Dongshan Bay, Southern China). In this study, the virulence genes, antibiotic resistance of culturable Vibrio and the environmental factors affecting Vibrio abundance were analyzed in four seasons in DongShan Bay with different intensity of aquaculture practice. A total of 253 bacteria isolates were obtained, of which 177 Vibrio strains belonged to 26 species. Annual Vibrio abundance in this region ranged from 20 to 11,600 CFU mL(-1) and the most significant positive correlation occurred with temperature. Detection of 9 different Vibrio virulence genes revealed that most isolates contained atypical virulence genes in addition to the typical ones. In particular, virulence genes of hemolysin such as tdh, trh, and hlyA (6.32 %, 15.52 %, and 11.30 %) showed different degrees of horizontal gene transfer (HGT). In our antibiotic resistance test, the multiple antibiotic resistance (MAR) index of the isolates ranged from 0.01 to 0.03 in different seasons, and three MAR Vibrio strains were detected. Overall, our study sheds new light on the spatial distribution patterns and the occurrence of virulence genes and antibiotics resistance Vibrio isolated from a subtropical bay with intensive aquaculture. Our study provides a suitable microbial quality surveillance in a mariculture impacted coastal environment. It will help to establish effective disease prevention measures in this area and provide useful guidance and support for formulating local antibiotics use policies.202236113173
308840.9997Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China.201222377146
284250.9997Assessing antimicrobial and metal resistance genes in Escherichia coli from domestic groundwater supplies in rural Ireland. Natural ecosystems can become significant reservoirs and/or pathways for antimicrobial resistance (AMR) dissemination, with the potential to affect nearby microbiological, animal, and ultimately human communities. This is further accentuated in environments that provide direct human exposure, such as drinking water. To date, however, few studies have investigated AMR dissemination potential and the presence of co-selective stressors (e.g., metals/metalloids) in groundwater environments of human health significance. Accordingly, the present study analysed samples from rural (drinking) groundwater supplies (i.e., private wells) in the Republic of Ireland, where land use is dominated by livestock grazing activities. In total, 48 Escherichia coli isolates tested phenotypically for antimicrobial susceptibility in an earlier study were further subject to whole genome sequencing (WGS) and corresponding water samples were further analysed for trace metal/metalloid concentrations. Eight isolates (i.e., 16.7%) were genotypically resistant to antimicrobials, confirming prior phenotypic results through the identification of ten antimicrobial resistance genes (ARGs); namely: aph(3″)-lb (strA; n=7), aph(6)-Id (strA; n = 6), blaTEM (n = 6), sul2 (n = 6), tetA (n = 4), floR (n = 2), dfrA5 (n = 1), tetB (n = 1), and tetY (n = 1). Additional bioinformatic analysis revealed that all ARGs were plasmid-borne, except for two of the six sul2 genes, and that 31.2% of all tested isolates (n = 15) and 37.5% of resistant ones (n = 3) carried virulence genes. Study results also found no significant relationships between metal concentrations and ARG abundance. Additionally, just one genetic linkage was identified between ARGs and a metal resistance gene (MRG), namely merA, a mercury-resistant gene found on the same plasmid as blaTEM, dfrA5, strA, strB, and sul2 in the only isolate of inferred porcine (as opposed to bovine) origin. Overall, findings suggest that ARG (and MRG) acquisition may be occurring prior to groundwater ingress, and are likely a legacy issue arising from agricultural practices.202337343911
534260.9997Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs.202236071971
537370.9997Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90-100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens.202337308603
286580.9997Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
194390.9997Occurrence and distribution of antibiotic-resistant bacteria and transfer of resistance genes in Lake Taihu. The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: bla(TEM) > bla(SHV) > bla(CTMX) and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption.201324240317
2735100.9997Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla (PSE) were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.202336929890
2864110.9997Case study on the soil antibiotic resistome in an urban community garden. Urban agricultural soils can be an important reservoir of antibiotic resistance, and have great food safety and public health indications. This study investigated antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. In total, 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, MI, USA. The most prevalent antibiotic resistance phenotype demonstrated by Gram-negative bacteria was resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%) and ceftriaxone (71.1%). All Gram-positive bacteria were resistant to gentamicin, kanamycin and penicillin. Genes encoding resistance to quinolones, β-lactams and tetracyclines were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in the quinolone and tetracycline resistance genes tested, respectively. Positive correlation (P<0.05) was identified among groups of antibiotic resistance genes, and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment.201829857032
5310120.9997Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste. This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.201526197056
3128130.9997Diversity and antibiotic susceptibility pattern of cultivable anaerobic bacteria from soil and sewage samples of India. Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health.201120965279
2860140.9997Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10(-9) to 1.8 × 10(-3) with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.202235066837
5298150.9997Investigation of the antimicrobial susceptibility patterns of marine cyanobacteria in Bohai Bay: Cyanobacteria may be important hosts of antibiotic resistance genes in marine environment. Marine cyanobacteria, as widely distributed and photosynthetically autotrophic bacteria in the ocean, may contribute to the global dissemination of antibiotic resistance genes (ARGs) and develop a different antimicrobial susceptibility pattern from heterotrophic bacteria and cyanobacteria from freshwater environments. However, studies on antimicrobial susceptibility and the carriage of ARGs in marine cyanobacteria are still very limited. In this study, the antibiotic resistance characteristics of cyanobacteria in nearshore waters were examined through field monitoring and laboratory investigations, which included PCR detection and ARG transformation. The results showed a positive correlation between marine cyanobacteria and some ARGs in the nearshore waters of Bohai Bay. Moreover, most screened cyanobacteria showed high minimum inhibitory concentration (MIC) values for polymyxins, tetracyclines, kanamycin, and sulfonamides, moderate MIC values for streptomycin, chloramphenicol, rifampicin, and norfloxacin, and low MIC values for roxithromycin and cephalosporins. The bla(TEM), bla(KPC), sul1, sul2, strA, tetA, tetB, tetC, tetM, mdfA, and intI1 genes were detected in the screened marine cyanobacteria. The highest detection rates were observed for bla(TEM) (93.3 %), sul1 (56.6 %), sul2 (90 %), and strA (73.3 %). The detection rate of tetA (33.3 %) was the highest among the tetracycline resistance genes, and mdfA, a multidrug-resistant pump gene with resistance to tetracycline, also showed a high detection level (23.3 %). Overall, most of the screened marine cyanobacteria were found to tolerate multiple antibiotics in seawater, and the condition of the ARGs carriage was serious. Furthermore, the screened marine Synechocystis sp. C12-2 demonstrated the ability to accept ARGs on the RP4 plasmid through natural transformation and showed reduced sensitivity to ampicillin, suggesting the possibility that some marine cyanobacteria could acquire ARGs from the environment through horizontal gene transfer. Thus, marine cyanobacteria may play an important role in the propagation of marine ARGs.202437972772
2847160.9997Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry and water in Punjab, India. Antibiotic resistance is a mushrooming pandemic at national and international levels which if not controlled at this very moment, can lead to global problems. Main reason for emerging bacterial resistance is repeated exposure of bacteria to antimicrobial agents and access of bacteria to increasingly large pools of antimicrobial resistance genes in mixed bacterial populations. A total of 51 villages were sampled in the current study contributing to a total of 153 farms. A total of 612 samples comprising 153 each of raw pooled milk samples, slurry, animal drinking water and human drinking water were gathered from small, medium and large farms located in all seven tehsils of Ludhiana district of Punjab. In addition to that, 37 samples of village pond water were also collected from the targeted villages. Out of total 153 slurry, raw pooled milk samples, animal drinking water and human drinking water samples (each), the prevalence of 24.8%, 60%, 26.7% and 16.3% was found for E. coli respectively. On the other hand, for Klebsiella, the overall prevalence of 19.6%, 51%, 20.2% and 5.8% was found from slurry, raw pooled milk samples, animal drinking water and human drinking water respectively. In all matrices, the comparative frequency of resistance genes in positive isolates of E. coli and K. pneumoniae was: tetA > tetB > tetC, qnrS > qnrB > qnrA, sulII > sulI > sulIII. The highest proportion of resistance genes was found in slurry (193 genes) followed by milk (71 genes). The overall pattern of resistant genes was tetA > sulII > qnrS. In conclusion, data from the present study suggested that commensal E. coli and Klebsiella may act as reservoirs of antimicrobial drug resistance genes which may be mobilised into human populations and untreated animal waste may be considered an important source of resistant bacteria leading to environmental pollution.202133544346
3371170.9997Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens.201728238372
5308180.9997Simultaneous stream assessment of antibiotics, bacteria, antibiotic resistant bacteria, and antibiotic resistance genes in an agricultural region of the United States. Antimicrobial resistance (AMR) is now recognized as a leading global threat to human health. Nevertheless, there currently is a limited understanding of the environment's role in the spread of AMR and antibiotic resistance genes (ARGs). In 2019, the U.S. Geological Survey conducted the first statewide assessment of antibiotic resistant bacteria (ARB) and ARGs in surface water and bed sediment collected from 34 stream locations across Iowa. Environmental samples were analyzed for a suite of 29 antibiotics and plated on selective media for 15 types of bacteria growth; DNA was extracted from culture growth and used in downstream polymerase chain reaction (PCR) assays for the detection of 24 ARGs. ARGs encoding resistance to antibiotics of clinical importance to human health and disease prevention were prioritized as their presence in stream systems has the potential for environmental significance. Total coliforms, Escherichia coli (E. coli), and staphylococci were nearly ubiquitous in both stream water and stream bed sediment samples, with enterococci present in 97 % of water samples, and Salmonella spp. growth present in 94 % and 67 % of water and bed sediment samples. Bacteria enumerations indicate that high bacteria loads are common in Iowa's streams, with 23 (68 %) streams exceeding state guidelines for primary contact for E. coli in recreational waters and 6 (18 %) streams exceeding the secondary contact advisory level. Although antibiotic-resistant E. coli growth was detected from 40 % of water samples, vancomycin-resistant enterococci (VRE) and penicillinase-resistant Staphylococcus aureus (MRSA) colony growth was detected from nearly all water samples. A total of 14 different ARGs were detected from viable bacteria cells from 30 Iowa streams (88 %, n = 34). Study results provide the first baseline understanding of the prevalence of ARB and ARGs throughout Iowa's waterways and health risk potential for humans, wildlife, and livestock using these waterways for drinking, irrigating, or recreating.202337673265
2859190.9997Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM(2.5)) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM(2.5) from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.202438855194