# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5302 | 0 | 1.0000 | Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event. Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. | 2016 | 26865482 |
| 3089 | 1 | 0.9998 | Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05). | 2022 | 35228362 |
| 3088 | 2 | 0.9998 | Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China. | 2012 | 22377146 |
| 5305 | 3 | 0.9998 | Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. | 2011 | 21907383 |
| 5373 | 4 | 0.9998 | Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90-100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens. | 2023 | 37308603 |
| 5306 | 5 | 0.9998 | Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges. Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge. | 2015 | 25901852 |
| 5298 | 6 | 0.9997 | Investigation of the antimicrobial susceptibility patterns of marine cyanobacteria in Bohai Bay: Cyanobacteria may be important hosts of antibiotic resistance genes in marine environment. Marine cyanobacteria, as widely distributed and photosynthetically autotrophic bacteria in the ocean, may contribute to the global dissemination of antibiotic resistance genes (ARGs) and develop a different antimicrobial susceptibility pattern from heterotrophic bacteria and cyanobacteria from freshwater environments. However, studies on antimicrobial susceptibility and the carriage of ARGs in marine cyanobacteria are still very limited. In this study, the antibiotic resistance characteristics of cyanobacteria in nearshore waters were examined through field monitoring and laboratory investigations, which included PCR detection and ARG transformation. The results showed a positive correlation between marine cyanobacteria and some ARGs in the nearshore waters of Bohai Bay. Moreover, most screened cyanobacteria showed high minimum inhibitory concentration (MIC) values for polymyxins, tetracyclines, kanamycin, and sulfonamides, moderate MIC values for streptomycin, chloramphenicol, rifampicin, and norfloxacin, and low MIC values for roxithromycin and cephalosporins. The bla(TEM), bla(KPC), sul1, sul2, strA, tetA, tetB, tetC, tetM, mdfA, and intI1 genes were detected in the screened marine cyanobacteria. The highest detection rates were observed for bla(TEM) (93.3 %), sul1 (56.6 %), sul2 (90 %), and strA (73.3 %). The detection rate of tetA (33.3 %) was the highest among the tetracycline resistance genes, and mdfA, a multidrug-resistant pump gene with resistance to tetracycline, also showed a high detection level (23.3 %). Overall, most of the screened marine cyanobacteria were found to tolerate multiple antibiotics in seawater, and the condition of the ARGs carriage was serious. Furthermore, the screened marine Synechocystis sp. C12-2 demonstrated the ability to accept ARGs on the RP4 plasmid through natural transformation and showed reduced sensitivity to ampicillin, suggesting the possibility that some marine cyanobacteria could acquire ARGs from the environment through horizontal gene transfer. Thus, marine cyanobacteria may play an important role in the propagation of marine ARGs. | 2024 | 37972772 |
| 5336 | 7 | 0.9997 | Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment. | 2022 | 35207435 |
| 2866 | 8 | 0.9997 | Characterization of tetracycline-resistant bacteria in an urbanizing subtropical watershed. AIMS: The objective of this study was to determine whether varying levels of urbanization influence the dominant bacterial species of mildly resistant (0·03 mmol l(-1) tetracycline) and highly resistant (0·06 mmol l(-1) tetracycline) bacteria in sediment and water. Also, the level of urbanization was further evaluated to determine whether the diversity of tetracycline resistance genes present in the isolates and the capability of transferring their resistance were influenced. METHODS AND RESULTS: Sediment and water samples collected from five sampling sites were plated in triplicate on nutrient agar plates with a mild dose (0·03 mmol l(-1) ) and a high dose (0·06 mmol l(-1) ) of tetracycline. Five colonies from each plate plus an additional five from each triplicate group were randomly selected and isolated on nutrient agar containing 0·03 mmol l(-1) tetracycline (400 isolates). The isolates were identified by 16S rRNA gene sequencing and comparison to GenBank using blast. The isolates were also screened for 15 tetracycline resistance genes using a multiplex PCR assay and their ability to transfer resistance through conjugation experiments using a kanamycin-resistant Escherichia. coli K-12 strain labelled with a green fluorescent protein gene. Results from this study indicate that the dominant resistant organisms in this watershed are Acinetobacter spp., Chryseobacterium spp., Serratia spp., Pseudomonas spp., Aeromonas spp. and E. coli. All of these organisms are Gram negative and are closely related to pathogenic species. A majority of the isolates (66%) were capable of transferring their resistance, and there was a greater incidence of tet resistance transfer with increasing urbanization. Also, it was determined that the dominant resistance genes in the watershed are tet(W) and tet(A). CONCLUSION: Urbanization significantly affected dominant tetracycline-resistant bacteria species, but did not affect dominant resistance genes. There was correlation between increased urbanization with an increase in the ability to transfer tetracycline resistance. This indicates that urban areas may select for bacterial species that are capable of transferring resistance. SIGNIFICANCE AND IMPACT OF STUDY: These results indicate that urbanization influences the occurrence of tetracycline-resistant bacteria and the potential for transfer of resistance genes. | 2013 | 23773226 |
| 5307 | 9 | 0.9997 | Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater. | 2021 | 34108949 |
| 5335 | 10 | 0.9997 | Quantification of vancomycin-resistant enterococci and corresponding resistance genes in a sewage treatment plant. This study aimed to analyze vancomycin-resistant enterococci (VRE) and their resistance genes, vanA and vanB, to examine their presence in sewage treatment systems. Water samples were collected from primary sedimentation tank inlet, aeration tank, final sedimentation tank overflow outlet, and disinfection tank. Enterococcal strains were determined their vancomycin susceptibility by the minimum inhibitory concentration (MIC) test. Vancomycin-resistance genes (vanA and vanB) were quantified by real-time PCR. The sewage treatment process indeed decreased the number of most enterococci contained in the entering sewage, with a removal rate of ≥ 5 log. The MIC test showed that two enterococcal strains resistant to a high concentration of vancomycin (>128 μg mL(-1)). However, most of the enterococcal strains exhibited sensitivity to vancomycin, indicating that VRE were virtually absent in the sewage treatment systems. On the other hand, vancomycin-resistance genes were detected in all the sewage samples, including those collected from the chlorination disinfection tank. The highest copy numbers of vanA (1.5 × 10(3) copies mL(-1)) and vanB (1.0 × 10(3) copies mL(-1)) were detected from the water sample of effluent water and chlorinated water, respectively. Therefore, antibiotic resistance genes remain in the sewage treatment plant and might discharged into water environments such as rivers and coastal areas. | 2015 | 26121014 |
| 2827 | 11 | 0.9997 | Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish. International trade with ornamental fish is gradually recognized as an important source of a wide range of different antibiotic resistant bacteria. In this study we therefore characterized the prevalence of selected antibiotic resistance genes in the microbiota found in the carriage water of ornamental fish originating from 3 different continents. Real-time PCR quantification showed that the sul1 gene was present in 11 out of 100 bacteria. tet(A) was present in 6 out of 100 bacteria and strA, tet(G), sul2 and aadA were present in 1-2 copies per 100 bacteria. Class I integrons were quite common in carriage water microbiota, however, pyrosequencing showed that only 12 different antibiotic gene cassettes were present in class I integrons. The microbiota characterized by pyrosequencing of the V3/V4 variable region of 16S rRNA genes consisted of Proteobacteria (48%), Bacteroidetes (29.5%), Firmicutes (17.8%), Actinobacteria (2.1%) and Fusobacteria (1.6%). Correlation analysis between antibiotic resistance gene prevalence and microbiota composition verified by bacterial culture showed that major reservoirs of sul1 sul2, tet(A), tet(B) tet(G), cat, cml, bla, strA, aacA, aph and aadA could be found among Alpha-, Beta- and Gammaproteobacteria with representatives of Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae and Comamonadaceae being those most positively associated with the tested antibiotic resistance genes. | 2014 | 25084116 |
| 5303 | 12 | 0.9997 | Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley, Mexico. Wastewater contains large amounts of pharmaceuticals, pathogens, and antimicrobial resistance determinants. Only a little is known about the dissemination of resistance determinants and changes in soil microbial communities affected by wastewater irrigation. Community DNAs from Mezquital Valley soils under irrigation with untreated wastewater for 0 to 100 years were analyzed by quantitative real-time PCR for the presence of sul genes, encoding resistance to sulfonamides. Amplicon sequencing of bacterial 16S rRNA genes from community DNAs from soils irrigated for 0, 8, 10, 85, and 100 years was performed and revealed a 14% increase of the relative abundance of Proteobacteria in rainy season soils and a 26.7% increase in dry season soils for soils irrigated for 100 years with wastewater. In particular, Gammaproteobacteria, including potential pathogens, such as Pseudomonas, Stenotrophomonas, and Acinetobacter spp., were found in wastewater-irrigated fields. 16S rRNA gene sequencing of 96 isolates from soils irrigated with wastewater for 100 years (48 from dry and 48 from rainy season soils) revealed that 46% were affiliated with the Gammaproteobacteria (mainly potentially pathogenic Stenotrophomonas strains) and 50% with the Bacilli, whereas all 96 isolates from rain-fed soils (48 from dry and 48 from rainy season soils) were affiliated with the Bacilli. Up to six types of antibiotic resistance were found in isolates from wastewater-irrigated soils; sulfamethoxazole resistance was the most abundant (33.3% of the isolates), followed by oxacillin resistance (21.9% of the isolates). In summary, we detected an increase of potentially harmful bacteria and a larger incidence of resistance determinants in wastewater-irrigated soils, which might result in health risks for farm workers and consumers of wastewater-irrigated crops. | 2014 | 24951788 |
| 5295 | 13 | 0.9997 | Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Because of the widespread use of antibiotics in animal breeding, the agricultural application of animal manure can lead to the introduction of antibiotics, antibiotic-resistant bacteria and antibiotic resistance genes to the soil and surrounding environment, which may pose a threat to public health. In this study, we investigated the status of (fluoro)quinolone (FQ) residues and FQ resistance levels in soil with and without receiving long-term swine manure. Six FQs (pipemidic acid, lomefloxacin, enrofloxacin, norfloxacin, ciprofloxacin, and ofloxacin) were only detected in manured soil, with individual concentrations ranging from below the detection limit to 27.2 μg kg(-1) and increasing with the increase in swine manure application rates. Higher load rates of swine manure yielded a higher number of ciprofloxacin-resistant (CIPr) bacteria after spreading. A total of 24 CIPr bacterial isolates were obtained from the tested soil, which belonged to four phyla (Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes) or were related to nine different genera. Only 18 isolates from manured soil were positive for five plasmid-mediated quinolone resistance (PMQR) genes (aac(6')-Ib-cr, qnrD, qepA, oqxA, and oqxB). To our knowledge, this study is the first to examine the occurrence of PMQR genes in FQ-resistant bacteria from the soil environment. A similar result was observed for the total DNA from soil, with the exception of aac(6')-Ib being detected in the control sample. The absolute and relative abundances of total PMQR genes also increased with fertilization quantity. Significant correlations were observed between FQ resistance levels and FQ concentrations. These results indicated that the agricultural application of swine manure led to FQ residues and enhanced FQ resistance. This investigation provides baseline data on FQ resistance profiles in soils receiving long-term swine manure. | 2015 | 26042895 |
| 3515 | 14 | 0.9997 | Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. The abundance and distribution of antibiotics and antibiotic resistance genes (ARGs) in soils from six parks using reclaimed water in Beijing, China, were characterized. Three classes of commonly used antibiotics (tetracycles, quinolones, and sulfonamides) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The highest concentrations of tetracyclines and quinolones were 145.2 μg kg(-1) and 79.2 μg kg(-1), respectively. Detected tetG, tetW, sulI, and sulII genes were quantified by quantitative PCR. ARGs exhibited various abundances for different park soils. The integrase gene (intI1) as an indicator of horizontal gene transfer potential was also detected in high abundance, and had significant positive correlation with tetG, sulI, and sulII genes, suggesting that intI1 may be involved in ARGs dissemination. Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria, such as Klebsiella oxytoca, Acinetobacter baumannii, Shigella flexneri, which could trigger potential public health concern. | 2014 | 24071635 |
| 5310 | 15 | 0.9997 | Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste. This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments. | 2015 | 26197056 |
| 3371 | 16 | 0.9997 | Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens. | 2017 | 28238372 |
| 5309 | 17 | 0.9997 | Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria, and thereby disseminating antimicrobial resistance genes (ARGs). In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals) and 12 sites (6 sites at city canals; 2 sites at chicken farms; 2 sites at pig farms; and 2 samples from sites at pig farms, which were subsequently treated at a biogas plant) in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Notably, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp.; however, both the concentration and rates of tetracycline resistance in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments. | 2016 | 27433156 |
| 5357 | 18 | 0.9997 | Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Antibiotics, antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and mobile genetic elements (MGEs) have been reported in many environments. However, the investigation of their occurrence and diversity in untreated hospital wastewater is still insufficient. High concentrations of antibiotic residues were found in hospital wastewater using solid-phase extraction and UPLC-MS/MS analysis. The concentrations of six of 14 antibiotics reached μg/L levels in the hospital wastewater, which is higher than reported in other aquatic environments. Results of high-throughput sequencing analysis indicated that sequences affiliated to genera Escherichia and Acinetobacter were the predominant in the cultivable multiple-antibiotic-resistant bacteria (CMARB) recovered from the wastewater of three hospitals in China, with compositions of 34%-74%. Notably, several genera containing clinically pathogenic or opportunistic CMARB (e.g., Escherichia, Acinetobacter, Aeromonas, Myroides, Enterococcus, Proteus, Pseudomonas, and Streptococcus) were detected at high relative abundances in the wastewaters of the three hospitals. High-capacity quantitative PCR showed that 131-139 unique ARGs of the 178 targeted genes were detected in the hospital wastewaters. The high prevalence of five MGEs and 12 ARGs was confirmed with qPCR, and some positive correlations between ARGs and MGEs were identified, such as between intI1 and qnrD, intI2 and sul3, intI3 and tetX, Tn916/Tn1545 and sul2, and ISCR1 and sul3. These results suggest that highly abundant antibiotic-resistant pathogens and highly mobile ARGs already exist in the human body, and that their release from hospitals without effective treatment poses high risks to environments and human health. | 2018 | 29054666 |
| 5299 | 19 | 0.9997 | Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. OBJECTIVES: Macrolides have a long history of use in animals and humans. Dynamics of macrolide-antibiotic resistance genes (ARGs) in waterways from the origin to the sea has not been reported. METHODS: Resistant bacterial rate was measured by culture method, and copy numbers of macrolide-ARGs, mef(A), erm(B), mph(B), mef(C)-mph(G), and mobile genetic elements (MGEs) traI and IntI1 were quantitated in environmental DNA. Community composition in each site was investigated by 16S rRNA gene metagenomic sequencing. In Yilan area, antibiotics were quantitated. RESULTS: Surface water samples from pig farms to the sea in southern and northern areas in Taiwan were monitored. Macrolide-resistant bacteria accounted for 3%-28% of total colony-forming bacteria in aquaculture ponds and rivers, whereas in pig farm wastewater it was 26%-100%. Three common macrolide-ARGs mef(A), erm(B), and mph(B) and the relatively new mef(C)-mph(G) were frequently detected in pig farms, but not in aquaculture ponds and the sea. Rivers receiving pig wastewater showed ARG contamination similar to the pig farms. Among the MGEs, IntI1 was frequently distributed in all sites and was positively related to mef(A), erm(B), and mph(B) but not to mef(C)-mph(G). CONCLUSION: Pig farms are the origin of macrolide-ARGs, although macrolide contamination is low. Since lincomycin was detected in pig farms in the northern area, the increase of macrolide-ARGs is a future concern due to cross-resistance to lincomycin. ARGs abundance in aquaculture ponds was low, though MGEs were detected. Relation of IntI1 to ARG suggests convergence of ARGs to specific MGEs might be time/history dependent. | 2022 | 35533984 |