Low-Concentration Ciprofloxacin Selects Plasmid-Mediated Quinolone Resistance Encoding Genes and Affects Bacterial Taxa in Soil Containing Manure. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
529101.0000Low-Concentration Ciprofloxacin Selects Plasmid-Mediated Quinolone Resistance Encoding Genes and Affects Bacterial Taxa in Soil Containing Manure. The spread of antimicrobial resistance in environment is promoted at least in part by the inappropriate use of antibiotics in animals and humans. The present study was designed to investigate the impact of different concentrations of ciprofloxacin in soil containing manure on the development of plasmid-mediated quinolone resistance (PMQR) - encoding genes and the abundance of soil bacterial communities. For these studies, high-throughput next-generation sequencing of 16S rRNA, real-time polymerase chain reaction and standard microbiologic culture methods were utilized. We demonstrated that the dissipate rate of relative abundances of some of PMQR-encoding genes, such as qnrS, oqxA and aac(6('))-Ib-cr, were significantly lower with ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared to no-ciprofloxacin control and ciprofloxacin 4 mg/kg exposure during 2 month. Also, the number of ciprofloxacin resistant bacteria was significantly greater in ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared with no-ciprofloxacin control and the ciprofloxacin 4 mg/kg exposure. In addition, lower ciprofloxacin concentration provided a selective advantage for the populations of Xanthomonadales and Bacillales in orders while Agrobacterium, Bacillus, Enterococcus, and Burkholderia in genera. These findings suggest that lower concentration of ciprofloxacin resulted in a slower rate of PMQR-encoding genes dissipation and selected development of ciprofloxacin-resistant bacteria in soil amended with manure.201627847506
529210.9999Antibiotic-Resistant Bacteria in Hydroponic Lettuce in Retail: A Comparative Survey. Hydroponic produce is gaining popularity due to its suitability for urban agriculture. The general public also considers that hydroponic produce is free from microbiological contamination. In this study, we compared the frequency and abundance of tetracycline-resistant and sulphadiazine-resistant bacteria and the minimal inhibitory concentration (MIC) of these isolates in conventional, organic, and hydroponic lettuce sold in retail. We also determined the frequency of samples carrying tetB, tetX, sul1, sul2, and int1 genes by PCR and further quantified the copy number of tetX, sul1, and int1 genes in samples positive for these genes using qPCR. As expected, the number of resistant bacteria and the MICs of these isolates were lowest in hydroponic lettuce and highest in organic lettuce. All tested resistant genes, except int1, were detected in samples of all three production methods, but no significant difference was observed between the three groups in the frequency of samples carrying the resistance genes examined or in their copy number. To the best of our knowledge, it is the first study directly reporting the existence of antibiotic-resistant bacteria and resistance genes in hydroponic vegetables sold in retail. The result highlights that the risk of antibiotic-resistant bacteria contamination in hydroponic produce should be further investigated.202032967196
343320.9999Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene bla(CMY-2) in an activated sludge microcosm. As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene bla(CMY-2) was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of bla(CMY-2) in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it.202539215485
528930.9998Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.201627065407
529340.9998Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.202133804606
529550.9998Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Because of the widespread use of antibiotics in animal breeding, the agricultural application of animal manure can lead to the introduction of antibiotics, antibiotic-resistant bacteria and antibiotic resistance genes to the soil and surrounding environment, which may pose a threat to public health. In this study, we investigated the status of (fluoro)quinolone (FQ) residues and FQ resistance levels in soil with and without receiving long-term swine manure. Six FQs (pipemidic acid, lomefloxacin, enrofloxacin, norfloxacin, ciprofloxacin, and ofloxacin) were only detected in manured soil, with individual concentrations ranging from below the detection limit to 27.2 μg kg(-1) and increasing with the increase in swine manure application rates. Higher load rates of swine manure yielded a higher number of ciprofloxacin-resistant (CIPr) bacteria after spreading. A total of 24 CIPr bacterial isolates were obtained from the tested soil, which belonged to four phyla (Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes) or were related to nine different genera. Only 18 isolates from manured soil were positive for five plasmid-mediated quinolone resistance (PMQR) genes (aac(6')-Ib-cr, qnrD, qepA, oqxA, and oqxB). To our knowledge, this study is the first to examine the occurrence of PMQR genes in FQ-resistant bacteria from the soil environment. A similar result was observed for the total DNA from soil, with the exception of aac(6')-Ib being detected in the control sample. The absolute and relative abundances of total PMQR genes also increased with fertilization quantity. Significant correlations were observed between FQ resistance levels and FQ concentrations. These results indicated that the agricultural application of swine manure led to FQ residues and enhanced FQ resistance. This investigation provides baseline data on FQ resistance profiles in soils receiving long-term swine manure.201526042895
352060.9998Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process. The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.201525424345
343270.9998Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.201525957255
529080.9998Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. OBJECTIVES: The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. MATERIALS AND METHODS: The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. RESULTS: Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. CONCLUSIONS: The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria.201728732786
532690.9998The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla (SHV-1), bla (TEM-1), msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC(90) values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.202439816252
3125100.9998Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria. The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. RESULT: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry.200414664871
3521110.9998Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Subinhibitory levels of antibiotics can promote the development of antibiotic resistance in bacteria. However, it is unclear whether antibiotic concentrations released into aquatic systems exert adequate pressure to select populations with resistance traits. To examine this issue, 15 mesocosms containing pristine surface water were treated with oxytetracycline (OTC) for 56 days at five levels (0, 5, 20, 50, and 250 microg L(-1)), and six tetracycline-resistance genes (tet(B), tet(L), tet(M), ted(O), tet(Q), and tet(W)), the sum of those genes (tet(R)), "total" 16S-rRNA genes, and transposons (Tn916 and Tn 1545) were monitored using real-time PCR. Absolute water-column resistance-gene abundances did not change at any OTC exposure. However, an increase was observed in the ratio of tet(R) to 16S-rRNA genes in the 250 microg L(-1) OTC units, and an increase in the selection rate of Tc(r) genes (relative to 16S-rRNA genes) was seen when OTC levels were at 20 microg L(-1). Furthermore, tet(M) and Tn916/1545 gene abundances correlated among all treatments (r2 = 0.701, p = 0.05), and there were similar selection patterns of tetR and Tn916/1545 genes relative to the OTC level, suggesting a possible mechanism for retention of specific resistance genes within the systems.200818754392
3529120.9998High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. BACKGROUND: Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5 g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. FINDINGS: Weaned pigs were fed diets for 4 weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg kg(-1) analytical grade ZnO. DNA extracts from stomach, mid-jejunum, terminal ileum and colon ascendens were amplified by qPCR assays to quantify copy numbers for the tetracycline (tetA) and sulfonamide (sul1) resistance genes in Gram-negative bacteria. Overall, the combined data (n = 336) showed that copy numbers for tetracycline and sulfonamide resistance genes were significantly increased in the high zinc treatment compared to the low (tetA: p value < 10(-6); sul1: p value = 1 × 10(-5)) or intermediate (tetA: P < 1.6 × 10(-4); sul1: P = 3.2 × 10(-4)) zinc treatment. Regarding the time dependent development, no treatment effects were seen 1 week after weaning, but significant differences between high and low/intermediate zinc treatments evolved 2 weeks after weaning. The increased number of tetA and sul1 copies was not confined to the hind gut, but was already present in stomach contents. CONCLUSIONS: The results of this study suggest that the use of high doses of dietary zinc beyond 2 weeks after weaning should be avoided in pigs due to the possible increase of antibiotic resistance in Gram-negative bacteria.201526322131
7121130.9998Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L(-1) of ENR) and poultry litter (up to 70 mg∙kg(-1) of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg(-1) to 9 μg∙kg(-1) after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.202438367114
7784140.9998No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline. Biodegradation of antibiotic residues in the environment by microorganisms may lead to the generation of antibiotic resistance genes (ARGs), which are of great concern to human health. The aim of this study was to determine whether there is a relationship between the ability to degrade antibiotic doxycycline (DOX) and the development of resistance genes in microorganisms. We isolated and identified ten bacterial strains from a vegetable field that had received long-term manure application as fertilizer and were capable of surviving in a series of DOX concentrations (25, 50, 80, and 100mg/L). Our results showed no evidential correlation between DOX degradation ability and the development of resistance genes among the isolated microorganisms that had high DOX degradation capability (P > 0.05). This was based on the fact that Escherichia sp. and Candida sp. were the most efficient bacterial strains to degrade DOX (92.52% and 91.63%, respectively), but their tetracycline resistance genes showed a relatively low risk of antibiotic resistance in a 7-day experiment. Moreover, the tetM of the ribosomal protection protein genes carried by these two preponderant bacteria was five-fold higher than that carried by other isolates (P < 0.05). Pearson correlations between the C(t)/C(0) of DOX and tet resistance genes of three isolates, except for Escherichia sp. and Candida sp., showed remarkable negative correlations (P < 0.05), mainly because tetG markedly increased during the DOX degradation process. Our results concluded that the biodegradation of antibiotic residues may not necessarily lead to the development of ARGs in the environment. In addition, the two bacteria that we isolated, namely, Escherichia sp. and Candida sp., are potential candidates for the engineering of environmentally friendly bacteria.201828942279
7124150.9998Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. This study investigated the impact of composting and lagoon storage on survival and change in diversity of tetracycline-resistant (Tc(r) ) and erythromycin-resistant (Em(r) ) bacteria and the resistance genes they carry in swine manure. Treatments were arranged as a 2 × 2 factorial design: composting vs lagoon storage and 0 vs 1% Surround WP Crop Protectant (a clay product) in three replicates. After 48 days of treatments, resistant bacteria were enumerated by selective plating and identified by 16S rRNA gene sequencing. The erm and the tet gene(s) carried by the resistant isolates were screened using class-specific PCR assays. The plate counts of Tc(r) and Em(r) bacteria decreased by 4-7 logs by composting, but only by 1-2 logs by the lagoon treatment. During the treatments, Acinetobacter gave way to Pseudomonas and Providencia as the largest resistant genera. The clay product had little effect on survival or diversity of resistant bacteria. Of six classes of erm and seven classes of tet genes tested, changes in prevalence were also noted. The results indicate that composting can dramatically shift Tc(r) and Em(r) bacterial populations, and composting can be an effective and practical approach to decrease dissemination of antibiotic resistance from swine farms to the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented research provided evidence that composting is much more effective than lagoon storage in dramatically decreasing culturable bacteria resistant to erythromycin and tetracycline in swine manure. Considerable diversity changes of resistant bacteria were also demonstrated during composting or lagoon storage. Overall, Acinetobacter was the major resistant genus in untreated swine manure, but pseudomonads and Providencia became the major resistant genera after the treatments. This is the first study that investigated diversity changes of cultured bacteria resistant to these two antibiotics during composting and lagoon storage of swine manure. New genes encoding resistance to the two antibiotics were also implied in the cultured isolates.201526031793
3429160.9998Emergence of phenotypic and genotypic resistance in the intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed long-term to sub-inhibitory concentrations of sulfamethoxazole. Natural waters are contaminated globally with pharmaceuticals including many antibiotics. In this study, we assessed the acquisition of antimicrobial resistance in the culturable intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed for 6 months to sub-inhibitory concentrations of sulfamethoxazole (SMX), one of the most prevalent antibiotics in natural waters. SMX was tested at three concentrations: 3000 µg/L, a concentration that had no observed effect (NOEC) on the in vitro growth of fish intestinal microbiota; 3 µg/L, a theoretical predicted no effect concentration (PNEC) for long-term studies in natural environments; and 0.3 µg/L, a concentration detected in many surveys of surface waters from various countries including the USA. In two independent experiments, the emergence of phenotypic resistance and an increased prevalence of bacteria carrying a sulfonamide-resistance gene (sul1) were observed in SMX-exposed fish. The emergence of phenotypic resistance to1000 mg/L SMX was significant in fish exposed to 3 µg/L SMX and was in large part independent of sul resistance genes. The prevalence of bacteria carrying the sul1 resistance gene increased significantly in the culturable intestinal microbiota of SMX-exposed fish, but the sul1-positive population was in large part susceptible to 1000 mg/L SMX, suggesting that the gene confers a lower resistance level or a growth advantage. The increased prevalence of sul1 bacteria was observed in all groups of SMX-exposed fish. Overall, this study suggests that fish exposed long-term to waters contaminated with low levels of antibiotics serve as reservoir of antimicrobial resistant genes and of resistant bacteria, a potential threat to public health.202134545508
3519170.9998Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste. Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria grown at 25 degrees C, 37 degrees C, and 60 degrees C decreased after treatment, but they were still abundant (10(2) to 10(8) most probable number ml(-1)) in the treated swine waste. The presence of 14 genes conferring resistance to tylosin and chlortetracycline was assessed by polymerase chain reaction in bacterial populations grown at 25 degrees C, 37 degrees C, and 60 degrees C, with or without antibiotics. In 22 cases, genes were detected before but not after treatment. The overall gene diversity was wider before [tet(BLMOSY), erm(AB)] than after [tet(LMOS), erm(B)] treatment. Analysis by denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA (rDNA) fragments generally showed a reduction of the bacterial diversity, except for total populations grown at 60 degrees C and for tylosin-resistant populations grown at 37 degrees C. The latter were further investigated by cloning and sequencing their 16S rDNA. Phylotypes found before treatment were all closely related to Enterococcus hirae, whereas six different phylotypes, related to Pseudomonas, Alcaligenes, and Pusillimonas, were found after treatment. This work demonstrated that the aerobic thermophilic biotreatment cannot be considered as a means for preventing the dissemination of aerobic antibiotic-resistant bacteria and their resistance genes to the environment. However, since pathogens do not survive the biotreatment, the effluent does not represent an immediate threat to animal or human health.200919125305
5317180.9998Effect of anaerobic digestion on pathogens and antimicrobial resistance in the sewage sludge. Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (bla(OXA), bla(TEM), ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission.202439244956
5336190.9998Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment.202235207435