# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5284 | 0 | 1.0000 | Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted. | 2019 | 31822712 |
| 3129 | 1 | 0.9998 | Effect of therapeutic administration of β-lactam antibiotics on the bacterial community and antibiotic resistance patterns in milk. Dairy cows with mastitis are frequently treated with antibiotics. The potential effect of antibiotics on the milk microbiome is still not clear. Therefore, the objective of this research was to investigate the effect of 2 commonly used cephalosporins on the milk microbiota of dairy cows and the antibiotic resistance genes in the milk. The milk samples were collected from 7 dairy cows at the period before medication (d 0), medication (d 1, 2, 3), withdrawal period (d 4, 6, 8), and the period after withdrawal (d 9, 11, 13, 15). We applied 16S rRNA sequencing to explore the microbiota changes, and antibiotic resistance patterns were investigated by quantitative PCR. The microbiota richness and diversity in each sample were calculated using the Chao 1 (richness), Shannon (diversity), and Simpson (diversity) indices. The cephalosporins treatment lowered the Simpson diversity value at the period of withdrawal. Members of the Enterobacter genera were the most affected bacteria associated with mastitis. Meanwhile, antibiotic resistance genes in the milk were also influenced by antibiotic treatment. The cephalosporins treatment raised the proportion of bla(TEM) in milk samples at the period of withdrawal. Therefore, the treatment of cephalosporins led to change in the milk microbiota and increase of β-lactam resistance gene in the milk at the time of withdrawal period. | 2021 | 33741154 |
| 2787 | 2 | 0.9998 | Multiplex Polymerase Chain Reaction/Pooled Antibiotic Susceptibility Testing Was Not Associated with Increased Antibiotic Resistance in Management of Complicated Urinary Tract Infections. OBJECTIVE: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated. METHODS: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12). RESULTS: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, p = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, p = 0.04). CONCLUSION: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted. | 2023 | 37193300 |
| 2869 | 3 | 0.9997 | Antibiotic resistance and antibiotic-resistance genes of Pseudomonas spp. and Escherichia coli isolated from untreated hospital wastewater. Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of β-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 μg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 10(8) and 4.3 × 10(6) CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the β-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest β-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health. | 2021 | 34280162 |
| 5264 | 4 | 0.9997 | Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment. | 2019 | 31671709 |
| 2859 | 5 | 0.9997 | Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM(2.5)) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM(2.5) from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes. | 2024 | 38855194 |
| 5687 | 6 | 0.9997 | The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance. | 2020 | 32646458 |
| 5314 | 7 | 0.9997 | High prevalence of colistin resistance genes in German municipal wastewater. Bacterial resistance against the last-resort antibiotic colistin is of increasing concern on a global scale. Wastewater is suspected to be one of the pathways by which resistant bacteria and the respective genes are disseminated. We employed a metagenomics approach to detect and quantify colistin resistance genes in raw municipal wastewater sampled at 9 locations all over Germany (14 samples in total, collected in 2016/2017). Our data support the findings of earlier studies according to which the prevalence of the colistin resistance gene mcr-1 is still low. However, we were able to demonstrate that the total prevalence of colistin resistance genes is dramatically underestimated if the focus is put on that specific gene alone. In comparison to mcr-1, other gene variants like mcr-3 and mcr-7 proved to be 10 to 100 times more abundant in samples of untreated wastewater. The average relative abundances expressed as copies per 16S rRNA gene copies were 2.3×10(-3) for mcr-3, 2.2×10(-4) for mcr-4, 3.0×10(-4) for mcr-5, and 4.4×10(-4) for mcr-7. While these four gene variants were ubiquitous in all 14 samples, mcr-1 was detected only once at a relative abundance of 1.4×10(-5). Our results suggest a high risk of increasing incidence of colistin resistance as large amounts of mcr genes are continuously disseminated to diverse microbial communities via the wastewater path. | 2019 | 31398645 |
| 5317 | 8 | 0.9997 | Effect of anaerobic digestion on pathogens and antimicrobial resistance in the sewage sludge. Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (bla(OXA), bla(TEM), ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission. | 2024 | 39244956 |
| 5665 | 9 | 0.9997 | Complementarity of Selective Culture and qPCR for Colistin Resistance Screening in Fresh and Frozen Pig Cecum Samples. Retrospective studies involving the screening of frozen stored collections of samples are commonplace when a new threat emerges, but it has been demonstrated that the freeze-thaw process can affect bacterial viability. The study of colistin-resistant bacteria in human and animal samples is an example of this issue. In this study, we compared culture-based and PCR-based methods for analyzing relative occurrence and diversity of colistin-resistant bacteria in caecal samples to determine the most appropriate method for frozen samples. Thus, 272 samples from the caecal contents of healthy pigs were tested before and after a 6-month freezing period. A selective medium was used when traditional isolation of colistin-resistant bacteria was tested, while a real-time SYBR(®) Green I PCR assay was applied for mcr-1 quantification. The number of samples with colistin-resistant isolates was higher in fresh samples (247/272) than in frozen ones (67/272) and showed a higher diversity of colistin-resistant genera. PCR identification of mcr colistin resistance genes evidenced that mcr-1 was the most prevalent mcr gene and mcr-2 was detected for the first time in pigs from Spanish animal production. The number of samples with mcr-1-carrying bacteria after a freezing period decreased, while real-time quantitation of the mcr-1 gene showed similar values in frozen and fresh samples. Therefore, when frozen cecal samples need to be analyzed, molecular detection of DNA could be the best option to provide a highly representative frame of the initial population present in the sample, and culture-based methods might be a useful complement to study colistin resistance levels. | 2020 | 33240230 |
| 2867 | 10 | 0.9997 | Enzymatic Activity and Horizontal Gene Transfer of Heavy Metals and Antibiotic Resistant Proteus vulgaris from Hospital Wastewater: An Insight. Globally, the issue of microbial resistance to medicines and heavy metals is getting worse. There are few reports or data available for Proteus vulgaris (P. vulgaris), particularly in India. This investigation intends to reveal the bacteria's ability to transmit genes and their level of resistance as well. The wastewater samples were taken from several hospitals in Lucknow City, India, and examined for the presence of Gram-negative bacteria that were resistant to antibiotics and heavy metals. The microbial population count in different hospital wastewaters decreases with increasing concentrations of metal and antibiotics. Among all the examined metals, Ni and Zn had the highest viable counts, whereas Hg, Cd, and Co had the lowest viable counts. Penicillin, ampicillin, and amoxicillin, among the antibiotics, demonstrated higher viable counts, whereas tetracycline and erythromycin exhibited lower viable counts. The MIC values for the P. vulgaris isolates tested ranged from 50 to 16,00 μg/ml for each metal tested. The multiple metal resistance (MMR) index, which ranged from 0.04 to 0.50, showed diverse heavy metal resistance patterns in all P. vulgaris isolates (in the case of 2-7 metals in various combinations). All of the tested isolates had methicillin resistance, whereas the least number of isolates had ofloxacin, gentamycin, or neomycin resistance. The P. vulgaris isolates displayed multidrug resistance patterns (2-12 drugs) in various antibiotic combinations. The MAR indexes were shown to be between (0.02-0.7). From the total isolates, 98%, 84%, and 80% had urease, gelatinase, and amylase activity, whereas 68% and 56% displayed protease and beta-lactamase activity. Plasmids were present in all the selected resistant isolates and varied in size from 42.5 to 57.0 kb and molecular weight from 27.2 to 37.0 MD. The transmission of the antibiotic/metal resistance genes was evaluated between a total of 7 pairs of isolates. A higher transfer frequency (4.4 × 10(-1)) was observed among antibiotics, although a lower transfer frequency (1.0 × 10(-2)) was observed against metals in both the media from the entire site tested. According to exponential decay, the population of hospital wastewater declined in the following order across all sites: Site II > Site IV > Site III > Site I for antibiotics and site IV > site II > site I >site III for metal. Different metal and antibiotic concentrations have varying effects on the population. The metal-tolerant P. vulgaris from hospital wastewater was studied in the current study had multiple distinct patterns of antibiotic resistance. It could provide cutting-edge methods for treating infectious diseases, which are essential for managing and assessing the risks associated with hospital wastewater, especially in the case of P. vulgaris. | 2022 | 36523753 |
| 2416 | 11 | 0.9997 | Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. OBJECTIVE: The purpose of this study was twofold: survey samples from acute and chronic endodontic infections for the presence of genes encoding resistance to beta-lactams, tetracycline and erythromycin, and evaluate the ability of treatment to eliminate these genes from root canals. DESIGN: DNA extracts from samples of abscess aspirates (n=25) and root canals of teeth with asymptomatic apical periodontitis (n=24) were used as template for direct detection of the genes blaTEM, cfxA, tetM, tetQ, tetW, and ermC using real-time polymerase chain reaction (PCR). Bacterial presence was determined using PCR with universal bacterial primers. Root canals of the asymptomatic cases were also sampled and evaluated after chemomechanical procedures using NiTi instruments with 2.5% NaOCl irrigation. RESULTS: All abscess and initial root canal samples were positive for bacteria. At least one of the target resistance genes was found in 36% of the abscess samples and 67% of the asymptomatic cases. The most prevalent genes in abscesses were blaTEM (24%) and ermC (24%), while tetM (42%) and tetW (29%) prevailed in asymptomatic cases. The blaTEM gene was significantly associated with acute cases (p=0.02). Conversely, tetM was significantly more prevalent in asymptomatic cases (p=0.008). Treatment eliminated resistance genes from most cases. CONCLUSIONS: Acute and chronic endodontic infections harboured resistance genes for 3 classes of widely used antibiotics. In most cases, treatment was effective in eliminating these genes, but there were a few cases in which they persisted. The implications of persistence are unknown. Direct detection of resistance genes in abscesses may be a potential method for rapid diagnosis and establishment of proactive antimicrobial therapy. | 2013 | 23591127 |
| 5641 | 12 | 0.9997 | A 7-year survey of drug resistance in aerobic and anaerobic fecal bacteria of surgical inpatients: clinical relevance and relation to local antibiotic consumption. One-day studies of bacteriological cultures of fecal specimens obtained from 409 surgical inpatients at 5 occasions enabled rapid assessment of antibiotic resistance in aerobic and anaerobic bacteria, relevant to abdominal infection. This novel approach to surveillance of drug resistance was tested in a 7-year survey at a surgical department. A distinct correlation between local drug consumption and prevalence of resistant fecal bacteria was recorded for ampicillin and doxycycline. 17 other agents studied showed no such obvious correlations. Huge increases of cefuroxime and metronidazole consumption caused no emergence of drug resistant aerobic and anaerobic fecal bacteria. Imipenem was the only agent tested, which inhibited both the aerobic and anaerobic fecal bacteria of nearly all patients. | 1989 | 2617202 |
| 2736 | 13 | 0.9997 | Characterization of Bacterial Communities and Their Antibiotic Resistance Profiles in Wastewaters Obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. In Nigeria, pharmaceutical wastewaters are routinely disseminated in river waters; this could be associated with public health risk to humans and animals. In this study, we characterized antibiotic resistant bacteria (ARB) and their antibiotic resistance profile as well as screening for sul1 and sul2 genes in pharmaceutical wastewater effluents. Bacterial composition of the wastewater sources was isolated on non-selective media and characterized by the polymerase chain reaction (PCR) amplification of the 16S rRNA genes, with subsequent grouping using restriction fragment length polymorphism (RFLP) and sequencing. The antibiotics sensitivity profiles were investigated using the standard disk diffusion plate method and the minimum inhibitory concentrations (MICs) of selected antibiotics on the bacterial isolates. A total of 254 bacterial strains were isolated, and majority of the isolates were identified as Acinetobacter sp., Klebsiella pneumonia, Proteus mirabilis, Enterobacter sp. and Bacillus sp. A total of 218 (85.8%) of the bacterial isolates were multidrug resistant. High MICs values were observed for all antibiotics used in the study. The result showed that 31.7%, 21.7% and 43.3% of the bacterial isolates harbored sul1, sul2, and Intl1 genes, respectively. Pharmaceuticals wastewaters are potential reservoirs of ARBs which may harbor resistance genes with possible risk to public health. | 2018 | 29966226 |
| 3125 | 14 | 0.9997 | Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria. The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. RESULT: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry. | 2004 | 14664871 |
| 2868 | 15 | 0.9997 | Detection and Analysis of Drug and Disinfectant Resistance Genes in the Sewage of a Center for Disease Control and Prevention. PURPOSE: Sewage is a significant reservoir for drug and disinfectant resistance genes and a medium for dissemination. This study aimed to evaluate the presence of drug and disinfectant resistance genes in the sewage of a Center for Disease Control and Prevention (CDC) and to assess the risks of their dissemination. METHODS: Sewage from a CDC in Hangzhou was collected, filtered, and enriched, and its microorganisms were cultured. The isolated bacteria were identified, and the minimum inhibitory concentration (MIC) was determined. The drug and disinfectant resistance genes in the sewage and bacteria were detected through polymerase chain reaction amplification. RESULTS: Three kinds of bacteria were isolated from the sewage sample. The MIC for Sphingomonas and Staphylococcus xylosus against chlorine-containing disinfectants was 250 mg/L, whereas the MIC for Bacillus firmus was 500 mg/L. The β-lactam resistance gene TEM and the disinfectant resistance gene qacA were positive in the bacteria, whereas the β-lactam resistance genes TEM, SHV, and VIM-1, the tetracycline resistance gene tetM, the aminoglycoside resistance genes aac(6')/aph(2') and aph3'-III, and the disinfectant resistance genes qacA, qacE, and qacEΔ1 were positive in the sewage. CONCLUSION: Drug and disinfectant resistance genes were found in the sewage of a CDC and were associated with bacteria. Thus, optimizing the monitoring and treatment of sewage is crucial. | 2025 | 40303605 |
| 2865 | 16 | 0.9997 | Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern. | 2002 | 12396530 |
| 1927 | 17 | 0.9997 | First Molecular Characterization and Antibiogram of Bacteria Isolated From Dairy Farm Wastewater in Bangladesh. This pioneering study in Bangladesh combines phenotypic and genotypic approaches to characterize antibiotic-resistant bacteria in dairy farm wastewater, addressing a critical gap in regional antimicrobial resistance (AMR) research. Dairy farming is integral to global food production, yet the wastewater generated by these operations is a significant source of environmental and public health concerns, particularly in the context of antibiotic resistance. This study aimed to isolate and identify antibiotic-resistant bacteria from dairy farm wastewater and evaluate their antibiogram profiles to inform effective management strategies. A total of 60 wastewater samples were collected and subjected to conventional bacterial characterization, followed by molecular detection via PCR and 16S rRNA gene sequencing. The study identified Pseudomonas aeruginosa (35%), Escherichia coli (30%), Bacillus subtilis (16.67%), and Acinetobacter junii (8.33%) as the predominant bacterial species. Sequencing results demonstrated high compatibility with reference sequences, confirming the identities of the isolates. Antibiogram analysis revealed significant resistance patterns: P. aeruginosa exhibited the highest resistance to penicillin (85.71%) and amoxicillin (76.19%), while demonstrating greater sensitivity to ciprofloxacin and cotrimoxazole. E. coli showed notable resistance to penicillin (88.89%), amoxicillin, and ceftriaxone, while B. subtilis and A. junii also demonstrated high levels of resistance to multiple antibiotics. Notably, a substantial proportion of the isolates exhibited multidrug resistance (MDR), with MAR indices ranging from 0.37 to 0.75. Moreover, several antibiotic resistance genes (ARGs) including penA, bla (TEM) , bla (CTX-M) , tetA, tetB, tetC, and ermB were detected across the bacterial species, with high prevalence rates in P. aeruginosa and A. junii, suggesting the potential for horizontal gene transfer and further spread of resistance. These findings underscore the critical need for a One Health approach to mitigate the risks posed by antibiotic-resistant bacteria in dairy farm wastewater, emphasizing the critical importance of responsible antibiotic use and sustainable farming practices to protect public health and environmental integrity. | 2025 | 40458482 |
| 2861 | 18 | 0.9997 | Antibiotic Resistance Profiles and Genomic Analysis of Endophytic Bacteria Isolates from Wild Edible Fungi in Yunnan. The use of antibiotics has led to the emergence of antibiotic resistance, posing significant challenges in the prevention, control, and treatment of microbial diseases, while threatening public health, the environment, and food safety. In this study, the antibiotic resistance phenotypes and genotypes of 56 endophytic bacteria isolates from three species of wild edible fungi in Yunnan were analyzed using the Kirby-Bauer disk diffusion method and PCR amplification. The results revealed that all isolates were sensitive to ofloxacin, but resistance was observed against 17 other antibiotics. Specifically, 55, 53, and 51 isolates exhibited resistance to amoxicillin, penicillin, and vancomycin, respectively. Antibiotic resistance gene (ARG) detection indicated that the sulfonamide sul1 gene had the highest detection rate (53.57%). Excluding the ARG that was not detected, the lowest detection rates were the sulfonamide sul2 and sul3 genes, both at 1.79%. Among six tetracycline resistance genes, only tetK and tetM were detected. For β-lactam antibiotics, blaTEM, blaVIM, and blaSHV genes were present, while blaOXA was absent. In aminoglycoside resistance genes, aadB was not detected, while detection rates for aac(3')-IIa, acrB, and aadA1 were 3.57%, 1.79%, and 37.5%, respectively. The chloramphenicol Cat gene was detected at a rate of 14.29%, whereas floR was absent. For polypeptide resistance, VanC was detected at 3.57%, with EmgrB not detected. All three quinolone genes were detected, with detection rates of 8.92% for GyrA, 39.29% for GyrB, and 37.5% for ParC. Through phylogenetic analysis, 12 isolates that are closely related to ten common foodborne pathogenic bacteria were further selected for whole-genome sequencing and assembly. Gene annotations revealed that each isolate contained more than 15 ARGs and over 30 virulence factors. Notably, the detection rate of antibiotic resistance phenotypes was higher than that of genotypes, highlighting the importance of studying phenotypic antibiotic resistance that lacks identifiable ARGs. This study enriches the research on endophytes in wild edible fungi and provides new data for microbial ecology and antibiotic resistance research. It also offers critical insights for monitoring microbial antibiotic resistance in wild edible fungi and potentially other food sources, contributing to more effective strategies for ecological protection, sustainable agricultural development, and public health security. | 2025 | 40005728 |
| 5312 | 19 | 0.9997 | Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; bla(OXA), bla(VEB), bla(KPC), bla(GES), mphE, mef, erm, msrE, AAC(6'), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment. | 2024 | 38930614 |