# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 527 | 0 | 1.0000 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 331 | 1 | 0.9964 | MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery. | 2010 | 21062372 |
| 766 | 2 | 0.9962 | The essential inner membrane protein YejM is a metalloenzyme. Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance. | 2020 | 33082366 |
| 526 | 3 | 0.9962 | Role of rhomboid proteases in bacteria. The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases. | 2013 | 23518036 |
| 765 | 4 | 0.9962 | Yeast ATP-binding cassette transporters: cellular cleaning pumps. Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function. | 2005 | 16399365 |
| 704 | 5 | 0.9961 | Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides. | 2012 | 22742453 |
| 198 | 6 | 0.9961 | The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD. Our data show that loss of dFADD function renders flies highly susceptible to Gram-negative infections without affecting resistance to Gram-positive bacteria. By genetic analysis we show that dFADD acts downstream of IMD in the pathway that controls inducibility of the antibacterial peptide genes. | 2002 | 12433364 |
| 371 | 7 | 0.9961 | Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Sulfometuron methyl, a sulfonylurea herbicide, blocks growth of bacteria, yeast, and higher plants by inhibition of acetolactate synthase (EC 4.1.3.18), the first common enzyme in the biosynthesis of branched-chain amino acids. Spontaneous mutations that confer increased resistance to the herbicide were obtained in cloned genes for acetolactate synthase from Escherichia coli and Saccharomyces cerevisiae. The DNA sequence of a bacterial mutant gene and a yeast mutant gene revealed single nucleotide differences from their respective wild-type genes. The mutations result in single amino acid substitutions in the structurally homologous aminoterminal regions of the two proteins, but at different positions. The bacterial mutation results in reduced levels of acetolactate synthase activity, reduced sensitivity to sulfometuron methyl, and unaltered resistance to feedback inhibition by valine. The yeast mutation results in unaltered levels of acetolactate synthase activity, greatly reduced sensitivity to sulfometuron methyl, and slightly reduced sensitivity to valine. | 1986 | 16593715 |
| 709 | 8 | 0.9960 | Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding. | 2016 | 26930060 |
| 304 | 9 | 0.9960 | Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a beta-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA--H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the CarF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel beta-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure 'self-resistance' in the Erwinia carbapenem producer. | 1997 | 9402024 |
| 764 | 10 | 0.9960 | Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi. PDR shares several similarities with processes in bacteria and higher eukaryotes. In mammalian cells, multidrug resistance (MDR) develops from an initial single drug resistance, eventually leading to a broad cross-resistance to many structurally and functionally unrelated compounds. Notably, a number of membrane-embedded energy-consuming ATP-binding cassette (ABC) transporters have been implicated in the development of PDR/MDR phenotypes. The yeast Saccharomyces cerevisiae genome harbors some 30 genes encoding ABC proteins, several of which mediate PDR. Therefore, yeast served as an important model organism to study the functions of evolutionary conserved ABC genes, including those mediating clinical antifungal resistance in fungal pathogens. Moreover, yeast cells lacking endogenous ABC pumps are hypersensitive to many antifungal drugs, making them suitable for functional studies and cloning of ABC transporters from fungal pathogens such as Candida albicans. This review discusses drug resistance phenomena mediated by ABC transporters in the model system S. cerevisiae and certain fungal pathogens. | 2006 | 16611035 |
| 179 | 11 | 0.9960 | The genetics and biochemistry of mercury resistance. The ability of bacteria to detoxify mercurial compounds by reduction and volatilization is conferred by mer genes, which are usually plasmid located. The narrow spectrum (Hg2+ detoxifying) Tn501 and R100 determinants have been subjected to molecular genetic and DNA sequence analysis. Biochemical studies on the flavoprotein mercuric reductase have elucidated the mechanism of reduction of Hg2+ to Hg0. The mer genes have been mapped and sequenced and their protein products studied in minicells. Based on the deduced amino acid sequences, these proteins have been assigned a role in a mechanistic scheme for mercury flux in resistant bacteria. The mer genes are inducible, with regulatory control being exerted at the transcriptional level both positively and negatively. Attention is now focusing on broad-spectrum resistance involving detoxification of organomercurials by an additional enzyme, organomercurial lyase. Lyase genes have recently been cloned and sequencing studies are in progress. | 1987 | 2827958 |
| 9109 | 12 | 0.9959 | Insights from the Molecular dynamics simulation of BcsD Subunit from K. xylinus. Biofilms are bacteria living in micro-colonies with a protective coating in sessile form. The biofilm protects bacteria from harsh surroundings as well as help in antibiotics resistance using a semi-fluid substance. Cellulose is the major component of biofilm, which provides the sticky appearance to bacteria for attaching to the substratum. The bacteria communicate in biofilm with the help of quorum sensing hormones Acylated Homoserine Lactones (AHL's). In Komagataeibacter xylinus the four genes Bcs A, Bcs B, Bcs C, Bcs D are associated with cellulose biosynthesis. The Bcs D subunits have a hypothetical octamer pore-like structure through which glucan molecule pass to form the cellulose. Therefore, it is of interest to document a structural understanding of Bcs D. Hence a homology model of Bcs D was simulated and analyzed further to gain functional insight towards biofilm formation. | 2017 | 29225430 |
| 558 | 13 | 0.9959 | Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria. | 2005 | 16356850 |
| 705 | 14 | 0.9959 | First structure of the polymyxin resistance proteins. PmrA/PmrB and PhoP/PhoQ are a pair of two-component systems (TCSs) that allow the Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin B. The two TCSs are linked by the polymyxin resistance protein, PmrD. The PhoP-activated PmrD protects the phosphorylated response regulator PmrA from dephosphorylation, and promotes the transcription of PmrA-activated genes responsible for polymyxin resistance. PmrD is the first protein identified to mediate the connectivity between two TCSs by protecting the phosphorylated response regulator of the downstream TCS. PmrD shows no homology to proteins with known structures. We present here the solution structure of PmrD from Escherichia coli, the first three-dimensional structure of the PmrD family. Our study provides the structural basis of the novel interacting mechanism of bacterial two-component signal-transduction systems. | 2007 | 17686460 |
| 372 | 15 | 0.9959 | A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper. | 1996 | 8692990 |
| 228 | 16 | 0.9959 | Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nonribosomal peptide antibiotics, including polymyxin, vancomycin, and teixobactin, most of which contain D-amino acids, are highly effective against multidrug-resistant bacteria. However, overusing antibiotics while ignoring the risk of resistance arising has inexorably led to widespread emergence of resistant bacteria. Therefore, elucidation of the emerging mechanisms of resistance to nonribosomal peptide antibiotics is critical to their implementation. Here we describe a networking-associated genome-mining platform for linking biosynthetic building blocks to resistance components associated with biosynthetic gene clusters. By applying this approach to 5,585 complete bacterial genomes spanning the entire domain of bacteria, with subsequent chemical and enzymatic analyses, we demonstrate a mechanism of resistance toward nonribosomal peptide antibiotics that is based on hydrolytic cleavage by D-stereospecific peptidases. Our finding reveals both the widespread distribution and broad-spectrum resistance potential of D-stereospecific peptidases, providing a potential early indicator of antibiotic resistance to nonribosomal peptide antibiotics. | 2018 | 29483640 |
| 248 | 17 | 0.9959 | Comparative Population Biology and Related Gene Expression in the Beta-Cypermethrin-Resistant Strains of Bactrocera dorsalis (Hendel). Diptera and Lepidoptera species have the highest levels of insecticide resistance, and the mechanism of drug resistance has been studied in detoxification metabolism genes such as P450, GST, EST, and ABC. Since Bactrocera dorsalis are resistant to a variety of chemicals, the pattern and mechanism of resistance in Bactrocera dorsalis have been investigated from a variety of aspects such as detoxification metabolism genes, detoxification enzymes, intestinal symbiotic bacteria, and synergists in the world. In this study, 51 species and 149 detoxification metabolism genes were annotated in the Suppression Subtractive Hybridization (SSH) library, and 12 candidate genes related to beta-cypermethrin resistance were screened and quantitatively expressed in this library. Two genes were found to be upregulated in the egg stage, three genes in the larval stage, one gene in the pupal stage, and five genes in the adult stage, and four genes were found to be upregulated in the midgut and the malacca ducts in the midgut. The expression of cyp6g1, cyp6a22, GST-Epsilon9, and Trypsin-4 genes was upregulated in resistant strains, with the most obvious upregulation occurring in the midgut and the Malpighian tubules. These results provide new insights into the study of pesticide resistance in quarantine insects. | 2024 | 39194774 |
| 796 | 18 | 0.9959 | The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. The multidrug resistance has emerged as a major problem in the treatment of many of the infectious diseases. Tuberculosis (TB) is one of such disease caused by Mycobacterium tuberculosis. There is short term chemotherapy to treat the infection, but the main hurdle is the development of the resistance to antibiotics. This resistance is primarily due to the impermeable mycolic acid rich cell wall of the bacteria and other factors such as efflux of antibiotics from the bacterial cell. The MmpL (Mycobacterial Membrane Protein Large) proteins of mycobacteria are involved in the lipid transport and antibiotic efflux as indicated by the preliminary reports. We present here, comprehensive comparative sequence and structural analysis, which revealed topological signatures shared by the MmpL proteins and RND (Resistance Nodulation Division) multidrug efflux transporters. This provides evidence in support of the notion that they belong to the extended RND permeases superfamily. In silico modelled tertiary structures are in homology with an integral membrane component present in all of the RND efflux pumps. We document internal gene duplication and gene splitting events happened in the MmpL genes, which further elucidate the molecular functions of these putative transporters in an evolutionary perspective. | 2015 | 25841626 |
| 373 | 19 | 0.9959 | The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria. | 2002 | 11916677 |