# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5266 | 0 | 1.0000 | Distribution analysis of tetracycline resistance genes in Escherichia coli isolated from floor surface and effluent of pig slaughterhouses in Banten Province, Indonesia. BACKGROUND AND AIM: Slaughterhouses and their effluents could serve as a "hotspot" for the occurrence and distribution of antibiotic-resistant bacteria in the environment. This study aimed to understand the distribution of tetracycline resistance genes in Escherichia coli isolated from the floor surface and effluent samples of pig slaughterhouses in Banten Province, Indonesia. MATERIALS AND METHODS: Ten samples, each from floor surface swabs and effluents, were collected from 10 pig slaughterhouses in Banten Province. Escherichia coli strains were isolated and identified by referring to the protocol of the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli from the WHO (2021). Quantitative real-time polymerase chain reaction (qPCR) was used to detect the tet genes. RESULTS: The tetA, tetB, tetC, tetM, tetO, and tetX genes were distributed in the isolates from the floor surface samples, and the tetA, tetC, tetE, tetM, tetO, and tetX genes were distributed in the isolates from the effluent samples. The tetO gene (60%) was the most dominant gene in the isolates from floor surface samples, while the tetA gene was the dominant one in the isolates from the effluent samples (50%). The tetA + tetO gene combination was the dominant pattern (15%) in the E. coli isolates. CONCLUSION: The high prevalence and diversity of the tet genes in floor surface and effluent samples from pig slaughterhouses in Banten Province indicated that the transmission of the tet genes had occurred from pigs to the environment; thus, this situation should be considered a serious threat to public health. | 2023 | 37041843 |
| 5265 | 1 | 0.9998 | Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. In this study, the abundance and spatial dynamics of antibiotic-resistant fecal bacteria (Escherichia coli, total coliforms and Enterococcus spp.) were determined in water and sediment samples from a river impacted by both antibiotic production plant (APP) and urban wastewater treatment plant (WWTP) discharges. Agar dilution and disk diffusion methods were also used for antimicrobial susceptibility testing. Two antimicrobial agents, cephalexin (25 μg/ml) and amoxicillin (50 μg/ml), were evaluated using the agar dilution method for E. coli, total coliforms (TC) and Enterococcus spp., whereas the degree of sensitivity or resistance of E. coli isolates to penicillin (10 U), ampicillin (10 μg), doxycycline (30 μg), tetracycline (30 μg), erythromycin (15 μg), azithromycin (15 μg) and streptomycin (10 μg) was performed using the disk diffusion method. Real-time PCR assays were used to determine the prevalence of three antibiotic-resistance genes (ARGs). The agar dilution method showed that most E. coli isolates and TC were resistant to amoxicillin, especially after receiving the APP discharges. Antibiotic resistances to amoxicillin and cephalexin were higher after the APP discharge point than after the WWTP effluent. The disk diffusion method revealed that 100% of bacterial isolates were resistant to penicillin and erythromycin. Multidrug-resistant bacteria were detected and showed a higher proportion at the WWTP discharge point than those in the APP. Highly multidrug-resistant bacteria (resistance to more than 4 antibiotics) were also detected, reaching mean values of 41.6% in water samples and 50.1% in sediments. The relative abundance of the blaTEM, blaCTX-M and blaSHV genes was higher in samples from the treatment plants than in those collected upstream from the discharges, especially for water samples collected at the APP discharge point. These results clearly demonstrate that both the APP and the WWTP contribute to the emergence and spread of antibiotic resistance in the environment. | 2014 | 24836130 |
| 5271 | 2 | 0.9998 | Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important. | 2020 | 33126462 |
| 5264 | 3 | 0.9998 | Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment. | 2019 | 31671709 |
| 5263 | 4 | 0.9998 | Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. OBJECTIVES: To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. METHODS: Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. RESULTS: In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. CONCLUSIONS: Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river. | 2018 | 29914198 |
| 2847 | 5 | 0.9997 | Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry and water in Punjab, India. Antibiotic resistance is a mushrooming pandemic at national and international levels which if not controlled at this very moment, can lead to global problems. Main reason for emerging bacterial resistance is repeated exposure of bacteria to antimicrobial agents and access of bacteria to increasingly large pools of antimicrobial resistance genes in mixed bacterial populations. A total of 51 villages were sampled in the current study contributing to a total of 153 farms. A total of 612 samples comprising 153 each of raw pooled milk samples, slurry, animal drinking water and human drinking water were gathered from small, medium and large farms located in all seven tehsils of Ludhiana district of Punjab. In addition to that, 37 samples of village pond water were also collected from the targeted villages. Out of total 153 slurry, raw pooled milk samples, animal drinking water and human drinking water samples (each), the prevalence of 24.8%, 60%, 26.7% and 16.3% was found for E. coli respectively. On the other hand, for Klebsiella, the overall prevalence of 19.6%, 51%, 20.2% and 5.8% was found from slurry, raw pooled milk samples, animal drinking water and human drinking water respectively. In all matrices, the comparative frequency of resistance genes in positive isolates of E. coli and K. pneumoniae was: tetA > tetB > tetC, qnrS > qnrB > qnrA, sulII > sulI > sulIII. The highest proportion of resistance genes was found in slurry (193 genes) followed by milk (71 genes). The overall pattern of resistant genes was tetA > sulII > qnrS. In conclusion, data from the present study suggested that commensal E. coli and Klebsiella may act as reservoirs of antimicrobial drug resistance genes which may be mobilised into human populations and untreated animal waste may be considered an important source of resistant bacteria leading to environmental pollution. | 2021 | 33544346 |
| 2890 | 6 | 0.9997 | Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal). Fecal pollution of surface waters is a current world-wide public health concern and may contribute for the dissemination of antibiotic resistance. The Tagus estuary located in the south of Portugal is one of the largest wetlands in the west coast of Europe. In this study, water samples were collected from seven stations with different anthropic pressures along the estuary and evaluated for water quality indicator bacteria. Escherichia coli isolates (n=350) were typed by REP-PCR. Representatives of each REP profile (n=220) were evaluated phenotypically for resistance to 17 antibiotics and characterized in terms of phylogenetic group. Resistant isolates were screened for the presence of antibiotic resistance genes (tet(A), tet(B), sul1, sul2, qnrA, qnrB, qnrS, aacA4-cr, bla(TEM), bla(SHV), bla(CTX-M), bla(CMY-like), bla(IMP), bla(VIM)) and integrase genes (intI1 and intI2). The highest antibiotic resistance prevalence was observed for streptomycin and tetracycline followed by β-lactams and sulphonamides. Among E. coli isolates, 65.16% were resistant to at least one of the 17 antibiotics tested and approximately 19% were multiresistant. In our E. coli population phylo-groups A and D were predominant and characterized by higher prevalence of the antibiotic resistance. intI1 and intI2 genes were found in 12% of the isolates with prevalence of class 1 integrons. A strong correlation between the prevalence of integrons and multiresistance was observed. Differences in terms of antibiotic resistance between phylogenetic groups and between sampling sites were statistically significant. The results demonstrate a high prevalence of antibiotic resistance among E. coli circulating in the Tagus estuary with emphasis on the occurrence of resistance to last-resort antibiotics and on the high incidence of multiresistance. | 2013 | 23714246 |
| 5270 | 7 | 0.9997 | Environmental antibiotic stress and high-risk resistance genes in bacterial communities of the Gomti and Ganga Rivers, India. BACKGROUND: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes. METHODS: Water samples were collected seasonally from different sites of Gomti and Ganga River. Bacteria were isolated by plating on nutrient agar supplemented with individual antibiotics (100 µg/ml) to select the resistant strains. These isolates were subsequently tested for cross-resistance to other antibiotics using the disc diffusion method. PCR was performed to detect selected ARGs. RESULTS: The enumeration of microbial population of Gomti River, the tetracycline-resistant bacteria comprised 38% of the bacterial population during spring and chloramphenicol resistance during autumn was a mere 11.9%. Nevertheless, erythromycin resistance was widespread amongst Ganga river bacteria during winter by 28%, while ciprofloxacin resistance was seen in autumn with only 15.8%. Bacterial population led to decline due to antibiotic-induced stress. The tetracycline-resistant bacteria were completely resistant to ampicillin and 66.6% were resistant to erythromycin. In Ganga river water, 53.5% of ampicillin-resistant isolates were resistant to erythromycin and sulphadiazine 93.3% were resistant to nalidixic acid. In the Gomti River water, the most common resistance gene among tetracycline resistant isolates was tetM (83.3%), followed by ampC (83.3%) in ampicillin-resistant isolates. In the Ganga River, 66.6% of bacterial isolates were found to have ampC and ermB genes. The sul1 gene was absent in all the bacterial isolates in both water samples. CONCLUSION: These findings indicate that both rivers act as reservoirs for multidrug-resistant bacteria harbouring complex resistance gene profiles. | 2025 | 40928717 |
| 2756 | 8 | 0.9997 | Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/bla(OXA-51) complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat. | 2022 | 35122847 |
| 2746 | 9 | 0.9997 | Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam. The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla(TEM) gene being more common than bla(CTX-M). Co-harbouring of the bla(CTX-M), bla(TEM) and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. | 2017 | 28661465 |
| 5269 | 10 | 0.9997 | Prevalence of antibiotic resistance genes in bacteria from Gomti and Ganga rivers: implications for water quality and public health. Rivers serve as a significant habitat and water sources for diverse organisms, including humans. An important environmental and public health concern is the increase in antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquatic ecosystems brought about by excessive pollutant flow. The research highlighted that river water, which is receiving discharge from wastewater treatment plants, is harbouring multidrug-resistant bacteria. River water samples were collected in January, April, July and October 2022 from three separate locations of each Gomti and Ganga river. A total of 114 bacteria were isolated from Gomti as well as the Ganga River. All the isolates were tested for their resistance to various antibiotics by disc diffusion method. The isolated bacteria were tested for the antibiotic resistance genes using PCR and were identified by 16s rRNA sequencing. The ARBs percentages for each antibiotic were as follows: ampicillin (100%); cefotaxime (96.4, 63.1%); erythromycin (52.6, 57.8%); amikacin (68.4, 50.8%); tetracycline (47.3, 54.3%); nalidixic acid (47.3, 45.6%); streptomycin (68.4, 49.1%); gentamycin (43.8, 35%); chloramphenicol (26.3, 33.3%); neomycin (49.1, 29.8%) and ciprofloxacin (24.5, 7.01%). Further, antibiotic resistance genes in Gomti and Ganga water samples disclose distinctive patterns, including resistance to ermB (25, 40%); tetM (25, 33.3%); ampC (44.4, 40%) and cmlA1 (16.6%). Notably cmlA1 resistant genes were absent in all bacterial strains of the Gomti River. Additionally, gyrA gene was not found in both the river water samples. The presence of ARGs in the bacteria from river water shows threat of transferring these genes to native environmental bacteria. To protect the environment and public health, constant research is necessary to fully understand the extent and consequences of antibiotic resistance in these aquatic habitats. | 2024 | 39349711 |
| 2737 | 11 | 0.9997 | Meropenem-resistant bacteria in hospital effluents in Seoul, Korea. This study aimed to understand the prevalence, diversity, antibiotic resistance, β-lactamase gene types, and possibility of environmental survival of meropenem-resistant bacteria present in hospital effluents in Seoul, Korea. Water sampling was performed at five general hospitals in Seoul, Korea, in January 2017. Water samples were plated in triplicate on tryptic soy agar plates with 16 mg/L meropenem. Meropenem-resistant bacteria were selected and subjected to 16S rRNA analysis for species determination and PCR for identification of β-lactamase gene types. Resistant bacteria were cultured in sterilized surface water. Meropenem-resistant bacteria exhibited resistance to more than 12 antibiotics and possessed several β-lactamase genes, such as those encoding OXT-M, NDM-1, AmpC, and OXA. They were able to multiply and survive in sterilized surface water for up to 60 days. Multidrug-resistant bacteria represent an environmental health risk, as they can survive in the environment for an extended period of time. Therefore, these bacteria should be monitored before discharge. | 2018 | 30361772 |
| 2624 | 12 | 0.9997 | Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. The dissemination of drug-resistant bacteria from animal farms to aquatic environments can pose a potential threat to public health. In this study, antimicrobial resistance, resistance genes, and genetic similarity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli of different origins (chicken feces and upstream and downstream river waters) were analyzed to track the spread of drug-resistant bacteria of animals. The results showed that a total of 29 ESBL-producing E. coli were obtained from 258 samples, and isolation rates of the ESBL-producing E. coli from chicken feces and upstream and downstream waters were 10.7% (16/150), 3.7% (1/27), and 14.8% (12/81), respectively. The ESBL-producing E. coli from upstream water was resistant to 7 antibiotics, but isolates from feces and downstream water had a higher resistance rate. In 29 ESBL-producing E. coli, the most common gene was CTX-M and the SHV gene was not detected. Five ESBL-producing isolates from downstream water showed >90% similarity with the fecal isolates, while the only one isolate from upstream water had <70% similarity with fecal isolates. The results suggest that animal farms' effluent, especially the untreated wastewater, could contribute to the spread of resistance genes. | 2014 | 25277838 |
| 5258 | 13 | 0.9997 | Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils. | 2019 | 30317094 |
| 2738 | 14 | 0.9997 | Diversity of bacteria carrying antibiotic resistance genes in hospital raw sewage in Southeastern Brazil. In recent decades, antibiotic-resistant bacteria (ARB) emerged and spread among humans and animals worldwide. In this study, we evaluated the presence of ARB and antibiotic resistance genes (ARGs) in the raw sewage of two hospitals in Brazil. Sewage aliquots were inoculated in a selective medium with antibiotics. Bacterial identification was performed by MALDI-TOF and ARGs were assessed by polymerase chain reaction (PCR). A total of 208 strains from both hospitals were isolated (H1 = 117; H2 = 91). A wide variety of Enterobacterales and non-Enterobacterales species were isolated and most of them were Enterobacter spp. (13.0%), Proteus mirabilis (10.1%), and Klebsiella pneumoniae (9.6%). blaTEM and blaKPC were the most frequent β-lactamase-encoding genes and the predominant macrolide resistance genes were mph(A) and mel. Many species had the three tetracycline resistance genes (tetD, tetM, tetA) and strB was the prevalent aminoglycoside resistance gene. Two Staphylococcus haemolyticus strains had the mecA gene. Quinolone, colistin, and vancomycin resistance genes were not found. This study showed that hospital raw sewage is a great ARB and ARG disseminator. Strict monitoring of hospital sewage treatment is needed to avoid the spread of these genes among bacteria in the environment. | 2023 | 36640035 |
| 2771 | 15 | 0.9997 | Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water. Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log(10) CFU mL(-1)) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log(10) CFU mL(-1)) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ(2) = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ(2) = 6.657, P < 0.05) and the antibiotic ceftazidime (χ(2) = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum β-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water. | 2021 | 33893564 |
| 2610 | 16 | 0.9997 | Antimicrobial Resistant Salmonella in Canal Water in Bangkok, Thailand: Survey Results Between 2016 and 2019. Antimicrobial resistance (AMR) in environmental reservoirs is an emerging global health concern, particularly in urban settings with inadequate wastewater management. This study aimed to investigate the prevalence and resistance profiles of Salmonella spp. in canal water in Bangkok and assess the distribution of key antibiotic resistance genes (ARGs). Between 2016 and 2019, a total of 1381 water samples were collected from 29 canals. Salmonella spp. were isolated using standard microbiological methods and tested for susceptibility to 13 antibiotics. Polymerase chain reaction (PCR) was used to detect extended-spectrum β-lactamase (ESBL) genes and class 1 integron. Salmonella was found in 89.7% of samples. Among these, 62.1% showed resistance to at least one antimicrobial, and 54.8% were multidrug-resistant (MDR). The highest resistance was observed against streptomycin (41.4%). ESBL genes, predominantly blaCTX-M, were detected in 72.2% of tested isolates, while class 1 integrons were found in 67.8%, indicating a strong potential for gene dissemination. The results highlight urban canals as critical environment reservoirs of AMR Salmonella serovars, posing significant public health risks, particularly where canal water is used for agriculture, household, or recreational purposes. Strengthened environmental surveillance and effective wastewater regulation are urgently needed to mitigate AMR bacteria transmission at the human-environment-animal interface. | 2025 | 41007477 |
| 2932 | 17 | 0.9997 | Resistance to Sulfonamides and Dissemination of sul Genes Among Salmonella spp. Isolated from Food in Poland. Antimicrobial resistance of pathogenic bacteria, including Salmonella spp., is an emerging problem of food safety. Antimicrobial use can result in selection of resistant organisms. The food chain is considered a route of transmission of resistant pathogens to humans. In many European countries, sulfonamides are one of the most commonly used antimicrobials. The aim of our investigation was to assess the prevalence of sul genes and plasmid occurrence among sulfonamide-resistant Salmonella spp. Eighty-four sulfonamide-resistant isolates were collected in 2008 and 2013 from retail products in Poland. Minimal inhibitory concentration of all of these isolates was ≥1024 μg/mL. Resistant isolates were tested for the presence of sul1, sul2, sul3, and int1 genes by using multiplex polymerase chain reaction. In total, 44.0% (37/84) isolates carried the sul1 gene, 46.4% (39/84) were sul2 positive, while the sul3 gene was not detected in any of the sulfonamide-resistant isolates tested. It was found that 3.6% (3/84) of resistant Salmonella spp. contained sul1, sul2, and intI genes. All 33 intI-positive isolates carried the sul1 gene. Eleven of the sulfonamide-resistant isolates were negative for all the sul genes. Most of the sulfonamide-resistant Salmonella spp. harbored plasmids; only in eight isolates were no plasmids detected. Generally, the size of the plasmids ranged from approximately 2 kb to ≥90 kb. Our results revealed a relatively a high prevalence of sulfonamides-resistant Salmonella spp. isolated from retail food. Additionally, we have detected a high dissemination of plasmids and class 1 integrons that may enhance the spread of resistance genes in the food chain. | 2015 | 25785781 |
| 2858 | 18 | 0.9997 | Antibiotic resistance in fecal sludge and soil in Ho Chi Minh City, Vietnam. This study investigated the prevalence of antibiotic-resistant bacteria and genes in fecal sludge and soil in Ho Chi Minh City, Vietnam, and identified the factors contributing to the survival of antibiotic-resistant bacteria in soil. Sludge and soil samples (n = 24 and 55, respectively) were collected from residential septic systems and environmental reservoirs (i.e., canals, rivers, and parks) in twelve districts of Ho Chi Minh City and tested against a library of 12 antibiotic-resistant genes and 1 integron gene. The susceptibility of isolated Escherichia coli from sludge and soil (n = 104 and 129, respectively) was tested against nine antibiotics. Over 60% of sludge and soil samples harbored sul1, ere(A), intI1, cmIA, and tet(A) genes. The three most common phenotypic resistances found in E. coli isolated from sludge and soil were to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim. In a temporal microcosm study of antibiotic-susceptible and multi-drug-resistant E. coli inoculated in soil, temperature (21.4 vs. 30 °C), resistance phenotype, and soil background microbial community were associated with E. coli decay rates over 73 days. This is the first study that provides insights into the high prevalence of antibiotic resistance in septic systems and environmental reservoirs in Ho Chi Minh City, Vietnam. Findings highlight that the fecal sludge and soil environments in Vietnam are likely reservoirs for dissemination of and human exposure to antibiotic resistance. | 2019 | 31643014 |
| 2930 | 19 | 0.9997 | Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied. | 2012 | 22823142 |