Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
524801.0000Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords.202438767750
530210.9990Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event. Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes.201626865482
280620.9990Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: an indication of polluted effluents. Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers.200919185323
308830.9989Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China.201222377146
537440.9989Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Diverse antibiotic-resistance genes (ARGs) are frequently reported to have high prevalence in veterinary manure samples due to extensive use of antibiotics in farm animals. However, the characteristics of the distribution and transmission of ARGs among bacteria, especially among different species of multiple antibiotic-resistant bacteria (MARB), have not been well explored. By applying high-throughput sequencing methods, our study uncovered a vast MARB reservoir in livestock manure. The genera Escherichia, Myroides, Acinetobacter, Proteus, Ignatzschineria, Alcaligenes, Providencia and Enterococcus were the predominant cultivable MARB, with compositions of 40.6%-85.7%. From chicken manure isolates, 33 MARB were selected for investigation of the molecular characteristics of antibiotic resistance. A total of 61 ARGs and 18 mobile genetic elements (MGEs) were investigated. We found that 47 ARGs were widely distributed among the 33 MARB isolates. Each isolate carried 27-36 genes responsible for resistance to eight classes of antibiotics frequently used in clinic or veterinary settings. ARGs to the six classes of antibiotics other than streptogramins and vancomycin were present in all 33 MARB isolates with a prevalence of 80%-100%. A total of 12 MGEs were widely distributed among the 33 MARB, with intI1, IS26, ISaba1, and ISEcp1 simultaneously present in 100% of isolates. In addition, 9 gene cassettes within integrons and ISCR1 were detected among MARB isolates encoding resistance to different antibiotic classes. This is the first report revealing the general co-presence of multiple ARGs, various MGEs and ARG cassettes in different species of individual MARB isolates in chicken manure. The results highlight a much higher risk of ARGs spreading through livestock manure to humans than we expected.201728599203
308650.9989Seasonal variation, virulence gene and antibiotic resistance of Vibrio in a semi-enclosed bay with mariculture (Dongshan Bay, Southern China). In this study, the virulence genes, antibiotic resistance of culturable Vibrio and the environmental factors affecting Vibrio abundance were analyzed in four seasons in DongShan Bay with different intensity of aquaculture practice. A total of 253 bacteria isolates were obtained, of which 177 Vibrio strains belonged to 26 species. Annual Vibrio abundance in this region ranged from 20 to 11,600 CFU mL(-1) and the most significant positive correlation occurred with temperature. Detection of 9 different Vibrio virulence genes revealed that most isolates contained atypical virulence genes in addition to the typical ones. In particular, virulence genes of hemolysin such as tdh, trh, and hlyA (6.32 %, 15.52 %, and 11.30 %) showed different degrees of horizontal gene transfer (HGT). In our antibiotic resistance test, the multiple antibiotic resistance (MAR) index of the isolates ranged from 0.01 to 0.03 in different seasons, and three MAR Vibrio strains were detected. Overall, our study sheds new light on the spatial distribution patterns and the occurrence of virulence genes and antibiotics resistance Vibrio isolated from a subtropical bay with intensive aquaculture. Our study provides a suitable microbial quality surveillance in a mariculture impacted coastal environment. It will help to establish effective disease prevention measures in this area and provide useful guidance and support for formulating local antibiotics use policies.202236113173
308960.9989Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05).202235228362
337170.9989Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens.201728238372
312780.9989Characterization of Bacteria and Antibiotic Resistance in Commercially Produced Cheeses Sold in China. ABSTRACT: The consumption of cheese in the People's Republic of China is increasing rapidly. Little is known about the microbiota, the presence of antibiotic-resistant bacteria, or the distribution of antibiotic resistance genes (ARGs) in commercially produced cheeses sold in China. This information is important for evaluating quality and safety. This study was conducted using 16S rRNA gene sequencing to assess the metagenomics of 15 types of cheese. Fourteen bacterial genera were detected, and Lactococcus, Lactobacillus, and Streptococcus were dominant based on number of sequence reads. Multidrug-resistant lactic acid bacteria (i.e., resistant to two or more types of antibiotic) were isolated from most of the types of cheese. Of these isolates, 100 and 91.7% were resistant to streptomycin and sulfamethoxazole, respectively, and genes involved in acquired resistance to streptomycin (strB) and sulfonamides (sul2) were detected with high frequency. To analyze the distribution of ARGs in the cheeses overall, 309 ARGs from eight categories and nine transposase genes were profiled. A total of 169 ARGs were detected in the 15 cheeses; their occurrence and abundance varied significantly between cheeses. Our study revealed diverse bacteria and ARGs in cheeses sold in China. The risks associated with multidrug resistance among dominant lactic acid bacteria are of great concern.202234855936
286090.9989Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10(-9) to 1.8 × 10(-3) with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.202235066837
3085100.9989Urbanization led to the abundance of Gram-negative, chemo-organo-heterotrophs, and antibiotic resistance genes in the downstream regions of the Ganga River water of India. The present investigation assesses the bacterial microbiome and antibiotic resistance genes (ARGs) of the river Ganga from Uttarakhand (upstream region; US group) and Uttar Pradesh (downstream region; DS group) regions using a 16S rRNA amplicon-based metagenomic approach. Gram-negative, aerobic, and chemo-organotrophic bacteria made up the majority of the bacterial genera during the overall analysis. Physicochemical analysis revealed a higher concentration of nitrate and phosphate in the downstream sites of the Ganga River. The prevalence of Gemmatimonas, Flavobacterium, Arenimonas, and Verrucomicrobia in the water of the DS region indicates a high organic load. Pseudomonas and Flavobacterium emerged as the most prevalent genera among the 35 significantly different shared genera (p-value < 0.05) in the US and DS regions, respectively. Overall antibiotic resistance analysis of the samples showed the dominance of β-lactam resistance (33.92%) followed by CAMP (cationic antimicrobial peptide) resistance (27.75%), and multidrug resistance (19.17%), vancomycin resistance (17.84%), and tetracycline resistance (0.77%). While comparing, the DS group exhibited a higher abundance of ARGs over the US group, where the CAMP resistance and β-lactam ARGs were dominant in the respective regions. The correlation (p-value < 0.05) analysis showed that most bacteria exhibit a significant correlation with tetracycline resistance followed by the phenicol antibiotic. The present findings draw attention to the need for regulated disposal of multiform human-derived wastes into the Ganga River to reduce the irrepressible ARGs dissemination.202337217817
5249110.9989Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption.202439611313
3087120.9989Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Antibiotic resistance has become an important focus of research in the aquaculture environment. However, few studies have evaluated antibiotic resistance during the seedling period in marine fish cage-culture areas. In this study, culture-dependent methods and quantitative polymerase chain reaction were used to identify and detect cultivable heterotrophic antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), respectively, during the seedling period in a marine fish cage-culture areas of Hainan, China. Bacterial resistance to amoxicillin, erythromycin, and gentamicin was generally high (average on 27.67%, 23.61% and 37.32%, respectively), whereas resistance to furazolidone and nitrofurantoin was generally low (average on 0.14% and 7.425%). Alteromonas (32.72%) and Vibrio (24.77%) were the dominant genus of ARB. Most ARB were opportunistic pathogens, belonging to the phylum Proteobacteria (96.02%). The abundance of sul family genes was higher than that of tet family genes. Overall, the abundance of ARGs and the resistance rates in HW was highest.201930955742
2864130.9989Case study on the soil antibiotic resistome in an urban community garden. Urban agricultural soils can be an important reservoir of antibiotic resistance, and have great food safety and public health indications. This study investigated antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. In total, 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, MI, USA. The most prevalent antibiotic resistance phenotype demonstrated by Gram-negative bacteria was resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%) and ceftriaxone (71.1%). All Gram-positive bacteria were resistant to gentamicin, kanamycin and penicillin. Genes encoding resistance to quinolones, β-lactams and tetracyclines were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in the quinolone and tetracycline resistance genes tested, respectively. Positive correlation (P<0.05) was identified among groups of antibiotic resistance genes, and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment.201829857032
5373140.9988Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90-100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens.202337308603
3128150.9988Diversity and antibiotic susceptibility pattern of cultivable anaerobic bacteria from soil and sewage samples of India. Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health.201120965279
5305160.9988Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.201121907383
2827170.9988Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish. International trade with ornamental fish is gradually recognized as an important source of a wide range of different antibiotic resistant bacteria. In this study we therefore characterized the prevalence of selected antibiotic resistance genes in the microbiota found in the carriage water of ornamental fish originating from 3 different continents. Real-time PCR quantification showed that the sul1 gene was present in 11 out of 100 bacteria. tet(A) was present in 6 out of 100 bacteria and strA, tet(G), sul2 and aadA were present in 1-2 copies per 100 bacteria. Class I integrons were quite common in carriage water microbiota, however, pyrosequencing showed that only 12 different antibiotic gene cassettes were present in class I integrons. The microbiota characterized by pyrosequencing of the V3/V4 variable region of 16S rRNA genes consisted of Proteobacteria (48%), Bacteroidetes (29.5%), Firmicutes (17.8%), Actinobacteria (2.1%) and Fusobacteria (1.6%). Correlation analysis between antibiotic resistance gene prevalence and microbiota composition verified by bacterial culture showed that major reservoirs of sul1 sul2, tet(A), tet(B) tet(G), cat, cml, bla, strA, aacA, aph and aadA could be found among Alpha-, Beta- and Gammaproteobacteria with representatives of Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae and Comamonadaceae being those most positively associated with the tested antibiotic resistance genes.201425084116
3109180.9988Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Ready-to-eat (RTE) foods have been considered to be reservoirs of antibiotic resistance bacteria, which constitute direct threat to human health, but the potential microbiological risks of RTE foods remain largely unexplored. In this study, the metagenomic approach was employed to characterize the comprehensive profiles of bacterial community and antibiotic resistance gene (ARG) in 18 RTE food samples (8 RTE meat, 7 RTE vegetables and 3 RTE fruit) in southern China. In total, the most abundant phyla in RTE foods were Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes and Actinobacteria. 204 ARG subtypes belonging to 18 ARG types were detected with an abundance range between 2.81 × 10(-5) and 7.7 × 10(-1) copy of ARG per copy of 16S rRNA gene. Multidrug-resistant genes were the most predominant ARG type in the RTE foods. Chloramphenicol, macrolide-lincosamide-streptogramin, multidrug resistance, aminoglycoside, bacitracin, tetracycline and β-lactam resistance genes were dominant, which were also associated with antibiotics used extensively in human medicine or veterinary medicine/promoters. Variation partitioning analysis indicated that the join effect of bacterial community and mobile genetic elements (MGEs) played an important role in the resistome alteration. This study further deepens the comprehensive understanding of antibiotic resistome and the correlations among the antibiotic resistome, microbiota, and MGEs in the RTE foods.202033093543
2825190.9988Taxonomic diversity of antimicrobial-resistant bacteria and genes in the Red Sea coast. Despite development of a record number of recreational sites and industrial zones on the Red Sea coast in the last decade, antibiotic-resistant bacteria in this environment remain largely unexplored. In this study, 16S rDNA sequencing was used to identify bacteria isolated from 12 sediment samples collected from the Red Sea coastal, offshore, and mangroves sites. Quantitative PCR was used to estimate the quantity of antimicrobial resistance genes (ARGs) in genomic DNA in the samples. A total of 470 bacteria were isolated and classified into 137 distinct species, including 10 candidate novel species. Site-specific bacterial communities inhabiting the Red Sea were apparent. Relatively, more resistant isolates were recovered from the coast, and samples from offshore locations contained the most multidrug-resistant bacteria. Eighteen ARGs were detected in this study encoding resistance to aminoglycoside, beta-lactam, sulfonamide, macrolide, quinolone, and tetracycline antibiotics. The qnrS, aacC2, ermC, and bla(TEM-1) genes were commonly found in coastal and offshore sites. Relatively higher abundance of ARGs, including aacC2 and aacC3, were found in the apparently anthropogenically contaminated (beach) samples from coast compared to other collected samples. In conclusion, a relative increase in antimicrobial-resistant isolates was found in sediment samples from the Red Sea, compared to other studies. Anthropogenic activities likely contribute to this increase in bacterial diversity and ARGs.201931063890