Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
524501.0000Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production.202133302298
524710.9997Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef.201830476443
524620.9996Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) Salmonella, 3GC(r) Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TET(r) Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops.201931532250
525830.9991Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils.201930317094
525740.9991Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively.201930758793
526050.9990Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 10(5) to 5.94 × 10(6) copies/g), blaTEM (1.48 × 10(5) to 2.2 × 10(6) copies/g), ermc (1.01 × 10(5) to 5.35 × 10(5) copies/g), hyg (1.35 × 10(5) to 1.93 × 10(6) copies/g), aadd (4.46 × 10(5) to 1.60 × 10(6) copies/g), nat1 (1.04 × 10(5) to 5.04 × 10(5) copies/g), nptII (2.17 × 10(4) to 1.69 × 10(5) copies/g), sul1 (2.01 × 10(5) to 4.60 × 10(5) copies/g), tetl (1.23 × 10(5) to 6.18 × 10(5) copies/g), shble (1.68 × 10(4) copies/g), and stra (4.8 × 10(4) to 1.9 × 10(5)copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health.202540230011
777260.9989Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. BACKGROUND: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 10(4) gene copies/mL) followed by intI3 (4.97 × 10(3) gene copies/mL) while intI2 abundance remained low (6.4 × 10(1) gene copies/mL). CONCLUSIONS: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.202235033203
528270.9989Occupational Exposure and Carriage of Antimicrobial Resistance Genes (tetW, ermB) in Pig Slaughterhouse Workers. OBJECTIVES: Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. METHODS: During 2015-2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. RESULTS: Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. CONCLUSION: We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage.202031883001
525980.9989Distribution of antibiotic resistance genes in Bosten Lake, Xinjiang, China. The occurrence of antibiotic resistance genes (ARGs) and resistant bacteria was quantified in 17 water samples collected across Bosten Lake, Xinjiang, China. The heterotrophic plate count method was used to detect the levels of sulfonamide- and tetracycline-resistant bacteria, which have mean concentrations of 2.50×10(5) and 4.63×10(3) CFU/mL, respectively. The resistance genes of sulfonamide (sul1, sul2) and tetracycline (tetM, tetO and tetW) were detected, and results showed that all other ARGs except the tetO gene were obtained from all samples. Four of the obtained ARGs were further quantified, and results showed that the sulfonamide resistance genes were prevalent. The relative abundance was in the range of 2.81×10(-5) to 3.33×10(-3) for the sul1/16s-rRNA and 1.04×10(-5) to 3.80×10(-3) for the sul2/16s-rRNA. For the tet genes, the relative concentrations of tetM/16s-rRNA and tetW16s-rRNA ranged from 1.18×10(-5) to 2.46×10(-4) and 1.58×10(-6) to 4.19×10(-4), respectively. The concentration divergence among ARGs may be related to the different characteristics of each gene. This study validated that Bosten Lake was affected by ARGs and resistant bacteria, thus turning the lake into an important reservoir for the transfer of ARGs and resistant bacteria.201425225942
135990.9989Assessment of Bacterial Contamination and Antimicrobial Resistance of Escherichia coli Isolates from Slovak Dairy Farms. The conditions in livestock housing are suitable for the survival of airborne microorganisms, mainly due to high temperatures, humidity, and the presence of organic material. The total count of airborne bacteria concentrations in cattle farms ranged from 3.01 log(10) CFU/mL to 6.90 log(10) CFU/mL; for coliform bacteria, they were from 2.18 log(10) CFU/mL to 3.34 log(10) CFU/mL; and for molds, they ranged from 3.00 log(10) CFU/mL to 4.57 log(10) CFU/mL. Bacteria resistant to antimicrobial substances and resistance genes can be spread on animal farms. Antimicrobial resistance in ubiquitous Escherichia coli isolated from cattle feces was investigated. Minimum inhibitory concentration (MIC) testing was utilized to identify phenotypic resistance profiles, and the PCR method was employed to detect the presence of resistant genes. A higher percentage of resistance was found to amikacin (65%), tetracycline (61%), streptomycin (56%), ampicillin (55%), and nalidixic acid (45%). Multidrug resistance was determined in up to 64.3% of the isolates studied. The most widespread resistance genes were bla(TEM) (85.7%), sul2 (66.7%), tetB (52.38%), and sul1 (47.6%). We found that 4.8% of the E. coli isolates had the bla(CMY) gene. We found that, despite phenotypic resistance, E. coli isolates do not necessarily carry genes conferring resistance to that particular antimicrobial agent.202439518818
1360100.9989First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.201828759321
5254110.9989Dissemination of the tet(X)-Variant Genes from Layer Farms to Manure-Receiving Soil and Corresponding Lettuce. The occurrence of high-level tigecycline resistance tet(X) variant genes represents a new transferable resistance crisis to food safety and human health. Here, we investigated the abundance of tet(X)-variant genes [tet(X), tet(X1) to tet(X6)] in 33 samples collected from layer manures, manured/un-manured soils, and corresponding lettuce from three provinces in China. The results showed the occurrence of tet(X)/(X2), tet(X3), and tet(X4) in 24 samples. The detection rate of tet(X)/(X2) (23/24) is higher than that of tet(X3) (7/24) and tet(X4) (2/24), and tet(X)/tet(X2) and tet(X3) were found to be enriched and more abundant in most manured soil and several lettuce samples from manured soils than that from manure samples. Twenty six tigecycline-resistant bacteria were isolated, and tet(X)-variant genes were found to be disseminated not only by bacterial clone spreading but also via multidrug resistance plasmids. The total concentrations of tet(X)-variant genes showed significantly positive correlations (R = 0.683, p < 0.001) with ISCR2. Two veterinary tetracyclines (tetracycline and oxytetracycline) and other classes of antimicrobials (enrofloxacin, azithromycin, thiamphenicol, and florfenicol) showed significant correlations with the total concentrations of tet(X)-variant genes (R = 0.35-0.516, p < 0.05). The findings indicate the transmission of tet(X)-variant genes from layer manures to their receiving environmental soils and lettuce and highlight the contribution of veterinary antimicrobials to the spread of tet(X)-variant genes.202133427447
5252120.9988Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment.200919064898
5267130.9988Diversity and antibiotic resistance of cultivable bacteria in bulk tank milk from dairy farms in Shandong Province, China. INTRODUCTION: This study systematically analyzed bacterial diversity and antimicrobial resistance (AMR) profiles in bulk tank milk from five dairy farms (n = 30) in Shandong Province, China, to assess public health risks associated with microbial contamination and provide critical data for regional quality control and AMR risk assessment in dairy production systems. METHODS: Total bacterial counts were quantified, revealing significant inter-farm variation (P < 0.05) with a range of 3.94-6.68 log CFU/mL. Among 129 bacterial isolates, genus-level dominance and species prevalence were identified. Antimicrobial susceptibility testing (AST) against 10 agents was performed using integrated resistance criteria combining Clinical and Laboratory Standards Institute (CLSI) standards and epidemiological cutoff values (ECOFFs). Nine resistance genes targeting seven antibiotic classes were detected via PCR. RESULTS: The highest resistance rate was observed for sulfadiazine (53.2%) and the lowest for levofloxacin (6.0%). Multidrug resistance was detected in 23% (20/87) of isolates, with 14 strains meeting ECOFFs-based resistance criteria. PCR analysis showed sul1 (70.5%) and ant(4')-Ia (54.3%) as the most prevalent resistance genes, while mcr-1, lnu (B), and bla (NDM-1) were absent in all isolates. Regional resistance variations correlated significantly with farm management practices. DISCUSSION: These findings underscore the impact of historical antibiotic use on AMR dissemination. Enhanced AMR surveillance in raw milk, improved antibiotic stewardship, and targeted interventions are crucial to mitigate public health risks from microbial contamination and horizontal gene transfer of resistance determinants.202540771950
2847140.9988Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry and water in Punjab, India. Antibiotic resistance is a mushrooming pandemic at national and international levels which if not controlled at this very moment, can lead to global problems. Main reason for emerging bacterial resistance is repeated exposure of bacteria to antimicrobial agents and access of bacteria to increasingly large pools of antimicrobial resistance genes in mixed bacterial populations. A total of 51 villages were sampled in the current study contributing to a total of 153 farms. A total of 612 samples comprising 153 each of raw pooled milk samples, slurry, animal drinking water and human drinking water were gathered from small, medium and large farms located in all seven tehsils of Ludhiana district of Punjab. In addition to that, 37 samples of village pond water were also collected from the targeted villages. Out of total 153 slurry, raw pooled milk samples, animal drinking water and human drinking water samples (each), the prevalence of 24.8%, 60%, 26.7% and 16.3% was found for E. coli respectively. On the other hand, for Klebsiella, the overall prevalence of 19.6%, 51%, 20.2% and 5.8% was found from slurry, raw pooled milk samples, animal drinking water and human drinking water respectively. In all matrices, the comparative frequency of resistance genes in positive isolates of E. coli and K. pneumoniae was: tetA > tetB > tetC, qnrS > qnrB > qnrA, sulII > sulI > sulIII. The highest proportion of resistance genes was found in slurry (193 genes) followed by milk (71 genes). The overall pattern of resistant genes was tetA > sulII > qnrS. In conclusion, data from the present study suggested that commensal E. coli and Klebsiella may act as reservoirs of antimicrobial drug resistance genes which may be mobilised into human populations and untreated animal waste may be considered an important source of resistant bacteria leading to environmental pollution.202133544346
1355150.9988Prevalence and molecular epidemiological characterization of antimicrobial-resistant Escherichia coli isolates from Japanese black beef cattle. We investigated the prevalence of antimicrobial-resistant Escherichia coli in Japanese black beef cattle from the three major production regions of Japan. We collected and examined 291 fecal samples from Japanese black beef cattle in Hokkaido, Chubu, and Kyushu. Of the 3,147 E. coli isolates, 1,397 (44.4%) were resistant to one or more antibiotics; these included 553 (39.8%) of 1,388 isolates from Hokkaido, 352 (54.4%) of 647 isolates from Chubu, and 492 (44.2%) of 1,112 isolates from Kyushu. The difference in resistance rates between the three regions was significant. The antibiotics with the highest rates of resistance were oxytetracycline and dihydrostreptomycin (35.8% each), followed by ampicillin (21.4%). Further, E. coli isolates from calves had higher resistance rates than those from growing cattle and mature cattle, and the calf isolates showed high rates of resistance to gentamicin (20.2%), enrofloxacin (9.4%), and ceftiofur (4.2%). In addition, the high degrees of similarity in the genotypes of the isolates and in the resistance patterns on each farm suggest that resistance bacteria and resistance genes were horizontally transferred. Most isolates, in each of the three regions, harbored resistance genes such as blaTEM, strA, strB, aphA1, aphAI-IAB, and catI. In contrast to the isolates from Kyushu, most of which harbored aacC2, tetB, and dfrA12, the isolates from Hokkaido and Chubu harbored a variety of resistance genes. Furthermore, the prevalence of genes for resistance to dihydrostreptomycin, gentamicin, chloramphenicol, and trimethoprim differed significantly between the regions. This is the first large-scale study describing and comparing antimicrobial-resistant bacteria from different regions in Japan. The results will contribute to improving food safety and promoting careful usage of antimicrobial agents.201323462075
5271160.9988Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important.202033126462
1366170.9988Day-old chicks are a source of antimicrobial resistant bacteria for laying hen farms. Antimicrobial resistant bacteria are rarely detected in laying hens and the objective of this longitudinal study was to test day-old chick as a source. Four different commercial batches raised on the same farm were monitored from day-old chick to laying hens using Escherichia coli as a model. Ten colonies from each of the eight samplings per batch were tested for antimicrobial susceptibility using 14 antimicrobials. Overall (313 isolates), higher resistance percentages were detected for tetracycline (26.8%), followed by sulphonamides (16.3%), ampicillin (16.0%) and quinolones (10.9% and 9.3% for ciprofloxacin and nalidixic acid, respectively). Resistance percentages of bacteria from day-old chicks were higher than those of pullets and hens (p < 0.05) for tetracycline, sulphonamides, trimethoprim and chloramphenicol. Forty different phenotypic resistance profiles were detected, led by fully susceptible (182 isolates; 58.1%), and followed by single tetracycline (28 isolates; 8.9%) and ciprofloxacin/ nalidixic acid (11 isolates; 3.5%) profiles. By whole-genome sequencing, 17 genes and mutations of five chromosomal genes related to resistance were detected, the most frequent being tetA, bla(TEM-1B) and sul1. Using multilocus sequencing analysis, 58 different MLST types were detected, most of them only in a particular sample. The ST155 (27/142) was the most frequently detected, followed by ST10 (19/142) and ST48 (9/142). The fate on the farm of the detected E. coli populations in old-day chicks was not clear, but our data suggest that they did not remain in the predominant faecal population of pullets and laying hens.201930827391
1369180.9988Antimicrobial resistance genes in Escherichia coli isolates recovered from a commercial beef processing plantt. The goal of this study was to assess the distribution of antimicrobial resistance (AMR) genes in Escherichia coli isolates recovered from a commercial beef processing plant. A total of 123 antimicrobial-resistant E. coli isolates were used: 34 from animal hides, 10 from washed carcasses, 27 from conveyers for moving carcasses and meat, 26 from beef trimmings, and 26 from ground meat. The AMR genes for beta-lactamase (bla(CMY), bla(SHV), and bla(TEM), tetracycline (tet(A), tet(B), and tet(C)), sulfonamides (sul1, sul2, and sul3), and aminoglycoside (strA and strB) were detected by PCR assay. The distribution of tet(B), tet(C), sul1, bla(TEM), strA, and strB genes was significantly different among sample sources. E. coli isolates positive for the tet(B) gene and for both strA and strB genes together were significantly associated with hide, washed carcass, and ground meat samples, whereas sull gene was associated with washed carcass and beef trimming samples. The bla(TEM) gene was significantly associated with ground meat samples. About 50% of tetracycline-resistant E. coli isolates were positive for tet(A) (14%), tet(B) (15%), or tet(C) (21%) genes or both tet(B) and tet(C) genes together (3%). The sul2 gene or both sul1 and sul2 genes were found in 23% of sulfisoxazole-resistant E. coli isolates, whereas the sul3 gene was not found in any of the E. coli isolates tested. The majority of streptomycin-resistant E. coli isolates (76%) were positive for the strA and strB genes together. The bla(CMY), bla(TEM), and bla(SHV) genes were found in 12, 56, and 4%, respectively, of ampicillin-resistant E. coli isolates. These data suggest that E. coli isolates harboring AMR genes are widely distributed in meat processing environments and can create a pool of transferable resistance genes for pathogens. The results of this study underscore the need for effective hygienic and sanitation procedures in meat plants to reduce the risks of contamination with antimicrobial-resistant bacteria.200919517739
5268190.9988Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. Global use of antibiotics has exceedingly enhanced in agricultural, veterinary and prophylactic human use in recent days. Hence, these antibiotics can easily be found in the environment. This study revealed the occurrence of emerging MDR and ESBL producing strains, pollution profile, and factors integrons (intI1 and intI2) and environmental factors associated, in the riverine systems under different ecological and geo-climatic zones were investigated. The samples were collected based on anthropogenic intervention such as discharge of domestic wastes, industrial wastes, hospital, and municipal wastes. Among 160bacterial morphotypes, 121 (75.62%) exhibited MDR trait with maximum resistance towards lincosamide (CD = 71.3%), beta-lactams (P = 70.6%; AMX = 66.3%), cephalosporin (CZ = 60.6%; CXM = 34.4%), sulfonamide (COT = 50.6%; TR = 43.8%) followed by macrolide (E = 29.4%), tetracycline (TET = 18.8%), aminoglycosides (S = 18.8%; GEN = 6.3%), fluoroquinolones (NX = 18.1%; OF = 4.4%) and carbapenem (IPM = 5.0%). IntI1 gene was detected in 73 (60.3%) of isolates, whereas intI2 was found in 11 (9.09%) isolates. Eight (6.61%) isolates carried both integron genes (intI1 and intI2). sul1 and dfrA1 genes were detected in 53 (72.6%) and 63 (86.3%) isolates, respectively. A total of 103 (85.1%) were found ESBL positive with the presence of ESBL genes in 100 (97.08%) isolates. In riverine systems most prevalent ESBL gene blaTEM (93.0%) was detected alone as well as in combination with bla genes. The data can be utilized for public awareness and regulation of guidelines by local governing bodies as an alarming threat to look-out against the prevalent resistance in environment thereby assisting in risk management during epidemics. This study is a comprehensive investigation of emerging antibiotic pollutants and its resistance in bacteria associated with factors integrons-integrase responsible for its dissemination. It may also assist in global surveillance of antibiotic resistance and policies to curtail unnecessary antibiotic use.202133181985