Supershed Escherichia coli O157:H7 Has Potential for Increased Persistence on the Rectoanal Junction Squamous Epithelial Cells and Antibiotic Resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
523201.0000Supershed Escherichia coli O157:H7 Has Potential for Increased Persistence on the Rectoanal Junction Squamous Epithelial Cells and Antibiotic Resistance. Supershedding cattle shed Escherichia coli O157:H7 (O157) at ≥ 10(4) colony-forming units/g feces. We recently demonstrated that a supershed O157 (SS-O157) strain, SS-17, hyperadheres to the rectoanal junction (RAJ) squamous epithelial (RSE) cells which may contribute to SS-O157 persistence at this site in greater numbers, thereby increasing the fecal O157 load characterizing the supershedding phenomenon. In order to verify if this would be the signature adherence profile of any SS-O157, we tested additional SS-O157 isolates (n = 101; each from a different animal) in the RSE cell adherence assay. Similar to SS-17, all 101 SS-O157 exhibited aggregative adherence on RSE cells, with 56% attaching strongly (>10 bacteria/cell; hyperadherent) and 44% attaching moderately (1-10 bacteria/cells). Strain typing using Polymorphic Amplified Typing Sequences (PATS) analysis assigned the 101 SS-O157 into 5 major clades but not to any predominant genotype. Interestingly, 69% of SS-O157 isolates were identical to human O157 outbreak strains based on pulsed field gel electrophoresis profiles (CDC PulseNet Database), grouped into two clades by PATS distinguishing them from remaining SS-O157, and were hyperadherent on RSE cells. A subset of SS-O157 isolates (n = 53) representing different PATS and RSE cell adherence profiles were analyzed for antibiotic resistance (AR). Several SS-O157 (30/53) showed resistance to sulfisoxazole, and one isolate was resistant to both sulfisoxazole and tetracycline. Minimum inhibitory concentration (MIC) tests confirmed some of the resistance observed using the Kirby-Bauer disk diffusion test. Each SS-O157 isolate carried at least 10 genes associated with AR. However, genes directly associated with AR were rarely amplified: aac (3)-IV in 2 isolates, sul2 in 3 isolates, and tetB in one isolate. The integrase gene, int, linked with integron-based AR acquisition/transmission, was identified in 92% of SS-O157 isolates. Our results indicate that SS-O157 isolates could potentially persist longer at the bovine RAJ but exhibit limited resistance towards clinical antibiotics.202032351572
233010.9989Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas. AIMS: The study aims to demonstrate the antimicrobial and disinfectant resistance phenotypes and genotypes of Escherichia coli isolates obtained from giant pandas (Ailuropoda melanoleuca). METHODS AND RESULTS: Antimicrobial testing was performed according to the standard disk diffusion method. The minimal inhibitory concentrations (MICs) of disinfectants were determined using the agar dilution method. All isolates were screened for the presence of antimicrobial and disinfectant resistance genes and further analysed for genetic relatedness by pulse-field gel electrophoresis (PFGE). Results showed that 46·6% of the isolates were resistant to at least one antimicrobial. Escherichia coli isolates showed resistance to fewer antimicrobials as panda age increased. Among antimicrobial-resistant E. coli isolates, the antimicrobial resistance genes blaCTX-M (88·2%) and sul1 (92·3%) were most prevalent. The disinfectant resistance genes emrE, ydgE/ydgF, mdfA and sugE(c) were commonly present (68·2-98·9%), whereas qac and sugE(p) were relatively less prevalent (0-21·3%). The frequencies of resistance genes tended to be higher in E. coli isolated in December than in July, and PFGE profiles were also more diverse in isolates in December. The qacEΔ1 and sugE(p) genes were higher in adolescent pandas than in any other age groups. PFGE revealed that antimicrobial resistance correlated well with sampling time and habitat. CONCLUSIONS: This study demonstrated that antimicrobial and disinfectant resistance was common in giant panda-derived E. coli, and the antimicrobial resistance was associated with sampling time and habitat. Escherichia coli could serve as a critical vector in spreading disinfectant and antimicrobial resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study that demonstrated the phenotypic and genetic characterizations of antimicrobial and disinfectant resistance in E. coli isolates from more than 60 giant pandas. Frequent transfer of pandas to other cages may lead to the dissemination of antimicrobial resistance. The study highlights the need for regularly monitoring the antimicrobial and disinfectant resistance in bacteria from giant pandas.201525846200
290420.9989The maintenance in the oral cavity of children of tetracycline-resistant bacteria and the genes encoding such resistance. OBJECTIVES: To investigate the maintenance of tetracycline-resistant oral bacteria and the genes encoding tetracycline resistance in these bacteria in children (aged 4--6 years) over a period of 12 months. METHODS: Plaque and saliva samples were taken from 26 children. Tetracycline-resistant bacteria were isolated and identified. The types of resistance genes and their genetic locations were also determined. RESULTS: Fifteen out of 18 children harboured tetracycline-resistant (defined as having a MIC>or=8 mg/L) oral bacteria at all three time points. The median percentage of tetracycline-resistant bacteria at 0, 6 and 12 months was 1.37, 1.37 and 0.85%, respectively; these were not significantly different. The MIC(50) of the group was 64 mg/L at all three time points compared with the MIC(90), which was 64 mg/L at 0 months, and 128 mg/L at 6 and 12 months. The most prevalent resistant species were streptococci (68%), which were isolated at all three time points in 13 children. The most prevalent gene encoding tetracycline resistance was tet(M) and this was found in different species at all three time points. For the first time, tet(32) was found in Streptococcus parasanguinis and Eubacterium saburreum. PCR and Southern-blot analysis (on isolates from three of the children) showed that the tet(M) gene was located on a Tn916-like element and could be detected at all three time points, in four different genera, Streptococcus, Granulicatella, Veillonella and Neisseria. CONCLUSIONS: The results of this study show that tetracycline-resistant bacteria and tet(M) are maintained within the indigenous oral microbiota of children, even though they are unlikely to have been directly exposed to tetracycline.200516027144
594130.9989Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy.201121081549
592640.9989Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan.202235704076
591950.9989Self-transmissible antibiotic resistance to ampicillin, streptomycin, and tetracyclin found in Escherichia coli isolates from contaminated drinking water. Presence and survival of cultivable bacteria in drinking water can act as a vehicle to disseminate virulence genes (adherence, enterotoxigenic and antibiotic resistance) to other bacteria. This can result in high morbidity and mortality, and the failure of the treatment of life threatening bacterial infections in humans and animals. In this study, antibiotic resistance (ABR) patterns and transferability of the ABR markers was investigated in Escherichia coli isolates obtained from drinking water and human urine samples. The ABR in E. coli isolates was determined against 15 antibiotics commonly used in human and veterinary medicine. A high frequency of ABR to carbenicillin (56%), tetracycline (53%) and streptomycin (49%) and a low frequency of cefizoxime (5%), amikacin (8%), cefazidine, (5%), chloramphenicol (9%), and kanamycin (18%) was found in the tested E. coli isolates. ABR to kanamycin (0% vs. 35%) and moxalactam (4% vs. 30%) was higher in drinking water isolates whereas resistance to streptomycin (92% vs. 15%), ampicillin (24% vs. 10%), and nalidixic acid (12% vs. 0%) was higher in human urine isolates. A large number of E. coli isolates (93%) exhibited resistance to two or more antibiotics. Two of E. coli isolates from drinking water showed resistances to six (Cb Cm Cx Ip Mx Tc and An Cb Km Mx Sm Tc) and one was resistant to seven antibiotics (Am An Cb Km Mx Sm Tc). A majority of the multiple antibiotic resistant E. coli isolates contained one or more plasmids (size ranged approximately 1.4 Kb to approximately 40 Kb). The ABR traits (Am and Tc) were transferable to other bacteria via conjugation. These data raise an important question about the impact of E. coli containing self-transmissible R-plasmids as a potential reservoir of virulence genes in drinking water.200415055932
591560.9989Characterization of Two Macrolide Resistance-Related Genes in Multidrug-Resistant Pseudomonas aeruginosa Isolates. In analyzing the drug resistance phenotype and mechanism of resistance to macrolide antibiotics of clinical Pseudomonas aeruginosa isolates, the agar dilution method was used to determine the minimum inhibitory concentrations (MICs), and PCR (polymerase chain reaction) was applied to screen for macrolide antibiotics resistance genes. The macrolide antibiotics resistance genes were cloned, and their functions were identified. Of the 13 antibiotics tested, P. aeruginosa strains showed high resistance rates (ranging from 69.5-82.1%), and MIC levels (MIC90 > 256 μg/ml) to macrolide antibiotics. Of the 131 known macrolide resistance genes, only two genes, mphE and msrE, were identified in 262 clinical P. aeruginosa isolates. Four strains (1.53%, 4/262) carried both the msrE and mphE genes, and an additional three strains (1.15%, 3/262) harbored the mphE gene alone. The cloned msrE and mphE genes conferred higher resistance levels to three second-generation macrolides compared to two first-generation ones. Analysis of MsrE and MphE protein polymorphisms revealed that they are highly conserved, with only 1-3 amino acids differences between the proteins of the same type. It can be concluded that even though the strains showed high resistance levels to macrolides, known macrolide resistance genes are seldom present in clinical P. aeruginosa strains, demonstrating that a mechanism other than this warranted by the mphE and msrE genes may play a more critical role in the bacteria's resistance to macrolides.202033574864
291770.9988Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Tetracycline-resistant (Tet(r)) bacteria were isolated from fishes collected at three different fish farms in the southern part of Japan in August and September 2000. Of the 66 Tet(r) gram-negative strains, 29 were identified as carrying tetB only. Four carried tetY, and another four carried tetD. Three strains carried tetC, two strains carried tetB and tetY, and one strain carried tetC and tetG. Sequence analyses indicated the identity in Tet(r) genes between the fish farm bacteria and clinical bacteria: 99.3 to 99.9% for tetB, 98.2 to 100% for tetC, 99.7 to 100% for tetD, 92.0 to 96.2% for tetG, and 97.1 to 100% for tetY. Eleven of the Tet(r) strains transferred Tet(r) genes by conjugation to Escherichia coli HB-101. All transconjugants were resistant to tetracycline, oxycycline, doxycycline, and minocycline. The donors included strains of Photobacterium, Vibrio, Pseudomonas, Alteromonas, Citrobacter, and Salmonella spp., and they transferred tetB, tetY, or tetD to the recipients. Because NaCl enhanced their growth, these Tet(r) strains, except for the Pseudomonas, Citrobacter, and Salmonella strains, were recognized as marine bacteria. Our results suggest that tet genes from fish farm bacteria have the same origins as those from clinical strains.200312957921
273180.9988Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. BACKGROUND: Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. METHODOLOGY: Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. RESULTS: Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. CONCLUSIONS: This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this strain could shuttle resistance plasmids to pathogenic bacteria.201526108344
291490.9988The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes.200515897222
5927100.9988The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. OBJECTIVES: To investigate the distribution of, associations between and the transferability of antimicrobial resistance genes in resistant Escherichia coli strains isolated from Norwegian meat and meat products. METHODS: The 241 strains investigated were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET) during the years 2000-2003. PCR was carried out for detection of resistance genes. Conjugation experiments were carried out with the resistant isolates from meat as donor strains and E. coli DH5alpha as the recipient strain. Statistical analyses were performed with the SAS-PC-System version 9.1 for Windows. RESULTS: Resistance genes common in pathogenic E. coli were frequently found among the isolates investigated. Strains harbouring several genes encoding resistance to the same antimicrobial agent were significantly (P < 0.0001) more frequently multiresistant than others. Strong positive associations were found between the tet(A) determinant and the genetic elements sul1, dfrA1 and aadA1. Negative associations were found between resistance genes encoding resistance to the same antimicrobial agent: tet(A)/tet(B), sul1/sul2 and strA-strB/aadA1. The resistance genes were successfully transferred from 38% of the isolates. The transfer was more frequent from resistant isolates harbouring class 1 integrons (P < 0.001). CONCLUSIONS: Acquired resistance played a major role in conferring resistance among the isolates investigated. The possibility of transferring resistance increases both by increased multiresistance and by the presence of class 1 integrons. The conjugation experiments suggest that tet(A) and class 1 integrons are often located on the same conjugative plasmid.200616931539
5924110.9988In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Transfer of resistance genes from bacteria from food producing animals to human pathogens is a potential risk to human health. The aim of this study was to determine in vivo transfer of a plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to Escherichia coli and the influence of the use of antimicrobials on this transfer. Thirty four-day-old SPF chickens colonized with E. coli K12 were divided into 3 groups of 10 animals each, and placed in separate isolators. Eleven days after inoculation with E. coli K12 the chickens were inoculated orally with 10(4)CFU of S. enterica spp. enterica serovar Typhimurium containing a plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Two days after the administration of S. Typhimurium 1 group was treated orally with doxycycline, 1 group orally with trimethoprim/sulphamethoxazole and 1 group remained untreated (control group). E. coli K12, S. Typhimurium and the transconjugants were isolated from cloacal samples on selective MacConkey agar plates. Transfer of the plasmid was confirmed by plasmid characterization, PCR, PFGE and hybridization. Plasmid mediated transfer of a class 1 integron was observed almost immediately after inoculation with S. Typhimurium. Treatment of the chickens with antibiotics had neither a positive nor a negative effect on the transfer rates. In addition to the resistance genes located on the integron, resistance genes encoding for tetracycline and amoxicillin resistance transferred from the donor strain as well. The resistance genes and the integron were located on a 130 kb sized IncFIB plasmid. Our data demonstrate in vivo transfer of an IncFIB plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to E. coli, with or without selective pressure of antibiotics in chickens.200919264430
2922120.9988Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920
2420130.9988Distribution of erm(F) and tet(Q) genes in 4 oral bacterial species and genotypic variation between resistant and susceptible isolates. BACKGROUND: Bacteroides forsythus, Porphyromonas gingivalis and Prevotella intermedia are Gram-negative anaerobic bacteria that are currently considered potential periopathogens. Prevotella nigrescens has recently been separated from P. intermedia and its rôle in periodontitis is unknown. The erm(F) gene codes for an rRNA methylase, conferring resistance to macrolides, lincosamides and streptogramin B (MLSB), and the tet(Q) gene for a ribosomal protection protein, conferring resistance to tetracycline. The presence of these resistance genes could impair the use of antibiotics for therapy. PURPOSE: The aim of this study was to determine the carriage of erm(F) and tet(Q), and genetic variability of 12 Porphyromonas gingivalis, 10 Prevotella intermedia, 25 Prevotella nigrescens and 17 Bacteroides forsythus isolates from 9 different patient samples. METHODS: We used polymerase chain reaction (PCR) for detecting antibiotic resistance genes, and pulsed-field gel electrophoresis (PFGE) for detecting genetic variability among the isolates. RESULTS: Thirty-one (48%) isolates were resistant to both erythromycin and tetracycline and carried the erm(F) and tet(Q) genes, eight (13%) were tetracycline resistant and carried the tet(Q) gene, 9 (14%) were erythromycin resistant and carried the erm(F) gene, and 12 (19%) isolates did not carry antibiotic resistance genes. PFGE was used to compare isolates from the same patient and isolates from different patient samples digested with XbaI. No association was found between antibiotic resistance gene carriage and PFGE patterns in any species examined. All isolates of the same species from the same patient had highly related or identical PFGE patterns. Isolates of same species from different patients had unique PFGE pattern for each species tested. CONCLUSION: All isolates of the same species from any one patient were genetically related to each other but distinct from isolates from other patients, and 66% of the patients carried antibiotic resistant isolates, which could impair antibiotic therapy.200211895543
2921140.9988Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants.200717953612
2895150.9988Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates.201222854332
2046160.9988QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. BACKGROUND & OBJECTIVES: Diverse mechanisms have been identified in enteric bacteria for their adaptation and survival against multiple classes of antimicrobial agents. Resistance of bacteria to the most effective fluoroquinolones have increasingly been reported in many countries. We have identified that most of the enterotoxigenic Escherichia coli (ETEC) were resistant to several antimicrobials in a diarrhoea outbreak at Ahmedabad during 2000. The present study was done to identify several genes responsible for antimicrobial resistance and mobile genetic elements in the ETEC strains. METHODS: Seventeen ETEC strains isolated from diarrhoeal patients were included in this study. The antimicrobial resistance was confirmed by conventional disc diffusion method. PCR and DNA sequencing were performed for the identification of mutation in the quinolone resistance-determining regions (QRDRs). Efflux pump was tested by inhibiting the proton-motive force. DNA hybridization assay was made for the detection of integrase genes and the resistance gene cassettes were identified by direct sequencing of the PCR amplicons. RESULTS: Majority of the ETEC had GyrA mutations at codons 83 and 87 and in ParC at codon 80. Six strains had an additional mutation in ParC at codon 108 and two had at position 84. Plasmid-borne qnr gene alleles that encode quinolone resistance were not detected but the newly described aac(6')-Ib-cr gene encoding a fluoroquinolne-modifying enzyme was detected in 64.7 per cent of the ETEC. Class 1 (intI1) and class 2 (intI2) integrons were detected in six (35.3%) and three (17.6%) strains, respectively. Four strains (23.5%) had both the classes of integrons. Sequence analysis revealed presence of dfrA17, aadA1, aadA5 in class 1, and dfrA1, sat1, aadA1 in class 2 integrons. In addition, the other resistance genes such as tet gene alleles (94.1%), catAI (70.6%), strA (58.8%), bla TEM-1 (35.2%), and aphA1-Ia (29.4%) were detected in most of the strains. INTERPRETATION & CONCLUSIONS: Innate gene mutations and acquisition of multidrug resistance genes through mobile genetic elements might have contributed to the emergence of multidrug resistance (MDR) in ETEC. This study reinforces the necessity of utilizing molecular techniques in the epidemiological studies to understand the nature of resistance responsible for antimicrobial resistance in different species of pathogenic bacteria.201121911975
2907170.9988Prevalence of tetracycline resistance genes and identification of tet(M) in clinical isolates of Escherichia coli from sick ducks in China. Tetracycline resistance is one of the most frequently encountered resistance properties in bacteria of animal origin. The aim of the present study was to investigate the prevalence and diversity of tetracycline resistance (tet) genes among Escherichia coli clinical isolates from diseased ducks in China and to report the identification and sequencing of the tet(M) gene. The susceptibility of 85 Escherichia coli strains to tetracyclines was determined by broth microdilution, and the presence of tet genes was investigated by multiplex PCR. All of the 85 isolates were fully resistant to both oxytetracycline and tetracycline, and 76.5 % were resistant to doxycycline. Seventy-seven of the isolates (90.6 %) encoded multiple tet genes, with 17.6, 38.8 and 34.1 % encoding two, three and four tet genes, respectively, and only 7.1 % encoded a single tet(A) gene. The MICs of oxytetracycline and tetracycline for all isolates ranged from 16 to ≥128 µg ml(-1) with a MIC90 of >128 µg ml(-1), regardless of the type or number of tet genes encoded. Isolates containing tet(M) commonly had more than one tet gene per strain. The doxycycline resistance rate in the tet(M)-positive isolates was significantly higher than in the tet(M)-negative isolates (P<0.05). A full-length tet(M) gene, including the promoter region, was obtained by PCR in seven of the 41 tet(M)-positive isolates and was sequenced and cloned. The cloned tet(M) gene conferred resistance to tetracyclines in the recombinant Escherichia coli host strain. These results revealed that, in these isolates, the prevalence of multiple tet genes was strikingly high and that tet(M) played a role in doxycycline resistance.201323475906
2048180.9988The Role of Plasmids in the Multiple Antibiotic Resistance Transfer in ESBLs-Producing Escherichia coli Isolated From Wastewater Treatment Plants. We compared the diversity of extended-spectrum β-lactamases (ESBLs) producing Escherichia coli (E. coli) in wastewater of a municipal wastewater treatment plant. This was done by analyzing multiple antibiotic resistant phenotypes and genotypes. Also, we investigated the antibiotic resistance transfer mechanism of the plasmid by comparing the antibiotic resistance gene linked transfer using a conjugative test, and by analyzing the full-length DNA sequence of one plasmid. The results showed that 50 ESBLs-producing E. coli isolates were isolated from 80 wastewater samples at the rate of 62.5% (50/80), out of which 35 transconjugants were obtained with the multiple antibiotic resistant transfer rate as high as 70.0% (35/50). Multiple antibiotic resistance was shown in all transconjugants and donor bacteria, which were capable of resistance to 11 out of 15 kinds of antibiotics. Both transconjugants and donors were capable of resistance to the Ampicillin and Cefalotin at a rate of 100.00% (35/35), while the total antibiotic resistant spectrum of transconjugants narrowed at the rate of 94.29% (33/35) and broadened at the rate of 5.71% (2/35) after conjugate to the donor bacteria. PCR showed that the resistant genotypes decreased or remained unchanged when compared to donor bacteria with transconjugants while the bla(TEM) and bla(CTX-M) genes were transferred and linked at a rate of 100.00% (35/35) and the bla(SHV) gene was at the rate as high as 94.29% (33/35). However, the qnrS gene was transferred at a low rate of 4.17% (1/24). In addition, the major resistance gene subtypes were bla(TEM-) (1), bla(SHV -11) , and bla(CTX-M-15) according to sequencing and Blast comparison. Plasmid wwA8 is a closed-loop DNA molecule with 83157 bp, and contains 45 predicted genes, including three antibiotic resistant resistance genes, bla(CTX-M-15) , bla(TEM-1) and qnrS1, which can be transferred with E. coli in vitro. This study shows that E. coli isolated from wastewater was capable of transferring resistance genes and producing antibiotic resistant phenotypes. The plasmids containing different resistance genes in E. coli play an important role in the multiple antibiotic resistant transfer. Most importantly, antibiotic resistant resistance genes have different transfer efficiencies, the bla(TEM) and bla(CTX-M) genes transferred at a rate of 100.00% and linked transfer in all 35 transconjugants.201931001218
2966190.9988Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.202438191447