# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5223 | 0 | 1.0000 | Cloned ermTR Gene Confers Low Level Erythromycin but High Level Clindamycin Resistance in Streptococcus pyogenes NZ131. Objectives: The most common macrolide resistance mechanisms in streptococci are the presence of methylase encoding genes ermB and ermTR or the presence of efflux encoded by mef genes. In the present study we aimed to show the effects of the ermTR gene under isogenic conditions on the activities of macrolides and lincosamides in streptococci. Materials and Methods: Total DNA was extracted from Streptococcus pyogenes C1, and the ermTR gene was amplified with or without the regulatory region using modified primer with insertion of restriction sites to clone in to pUC18. Transformants were selected after electroporation of Escherichia coli DB10. The recombinant plasmids were purified and merged to pJIM2246 to transform Gram positive bacteria. Recombinant pJIM2246 plasmids with the ermTR gene were then introduced into S. pyogenes NZ131 by electroporation. Results: After transformation with ermTR without regulatory region the minimal inhibitory concentration (MIC) for erythromycin and clindamycin increased from ≤0.06 to ≤0.06 to 8 and >128 mg/L, respectively. Induction with erythromycin affected the MICs for clindamycin of S. pyogenes transformed with ermTR with the regulatory region. Double disk testing showed that induction with erythromycin and azithromycin for the S. pyogenes transformed with ermTR, and regulatory regions decreased the clindamycin inhibition zone but not telithromycin. The ermTR gene in isogenic conditions confers low level resistance to erythromycin and high level resistance to clindamycin. Conclusion: The different induction and resistance profiles of ermTR compared to other erm genes suggest that the methylation of ErmTR may be different than well studied methylases. | 2020 | 31971866 |
| 5227 | 1 | 0.9994 | Mutation at the position 2058 of the 23S rRNA as a cause of macrolide resistance in Streptococcus pyogenes. BACKGROUND: In streptococci, three macrolide resistance determinants (erm(B), erm(TR) and mef(A)) have been found. In addition, certain mutations at the ribosomal 23S RNA can cause resistance to macrolides. Mutation at the position 2058 of the 23S rRNA of the Streptococcus pyogenes as a cause of macrolide resistance has not been described before. METHODS: Antibiotic resistance determinations for the clinical S. pyogenes strain ni4277 were done using the agar dilution technique. Macrolide resistance mechanisms were studied by PCR and sequencing. All six rRNA operons were amplified using operon-specific PCR. The PCR products were partially sequenced in order to resolve the sequences of different 23S rRNA genes. RESULTS: One clinical isolate of S. pyogenes carrying an adenine to guanine mutation at the position 2058 of the 23S rRNA in five of the six possible rRNA genes but having no other known macrolide resistance determinants is described. The strain was highly resistant to macrolides and azalides, having erythromycin and azithromycin MICs > 256 microgram/ml. It was resistant to lincosamides (clindamycin MIC 16 microgram/ml) and also MIC values for ketolides were clearly elevated. The MIC for telithromycin was 16 microgram/ml. CONCLUSION: In this clinical S. pyogenes strain, a mutation at the position 2058 was detected. No other macrolide resistance-causing determinants were detected. This mutation is known to cause macrolide resistance in other bacteria. We can conclude that this mutation was the most probable cause of macrolide, lincosamide and ketolide resistance in this strain. | 2004 | 15128458 |
| 5849 | 2 | 0.9993 | Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism. | 1989 | 2559912 |
| 5225 | 3 | 0.9992 | Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. We evaluated the minimum inhibitory concentrations of clindamycin and erythromycin toward 98 Bacillus licheniformis strains isolated from several types of fermented soybean foods manufactured in several districts of Korea. First, based on recent taxonomic standards for bacteria, the 98 strains were separated into 74 B. licheniformis strains and 24 B. paralicheniformis strains. Both species exhibited profiles of erythromycin resistance as an acquired characteristic. B. licheniformis strains exhibited acquired clindamycin resistance, while B. paralicheniformis strains showed unimodal clindamycin resistance, indicating an intrinsic characteristic. Comparative genomic analysis of five strains showing three different patterns of clindamycin and erythromycin resistance identified 23S rRNA (adenine 2058-N6)-dimethyltransferase gene ermC and spermidine acetyltransferase gene speG as candidates potentially involved in clindamycin resistance. Functional analysis of these genes using B. subtilis as a host showed that ermC contributes to cross-resistance to clindamycin and erythromycin, and speG confers resistance to clindamycin. ermC is located in the chromosomes of strains showing clindamycin and erythromycin resistance and no transposable element was identified in its flanking regions. The acquisition of ermC might be attributable to a homologous recombination. speG was identified in not only the five genome-analyzed strains but also eight strains randomly selected from the 98 test strains, and deletions in the structural gene or putative promoter region caused clindamycin sensitivity, which supports the finding that the clindamycin resistance of Bacillus species is an intrinsic property. | 2020 | 32271828 |
| 5226 | 4 | 0.9992 | Human vaginal Lactobacillus rhamnosus harbor mutation in 23S rRNA associated with erythromycin resistance. Little is known about the diversity and distribution of resistance determinants in human commensal bacteria. The aim of this study was to determine the molecular mechanism responsible for high-level erythromycin resistance among five human vaginal Lactobacillus rhamnosus isolates. PCR screening for the presence of ermA, ermB and ermC methylase genes revealed no determinants responsible for detected erythromycin resistance. Therefore, sequences of 23S rRNA genes from L. rhamnosus strains were studied by PCR-RFLP analysis and sequencing of 23S rRNA genes. According to the results, in all erythromycin-resistant L. rhamnosus strains, the presence of a A-->G transition mutation at position 2058 was discovered. Additionally, the isolates exhibited heterozygosity for the A2058/G2058 mutation among 23S rRNA gene copies. Presumably, the greatest number of mutated 23S rRNA operons was observed for the L. rhamnosus BGHV1' strain that also had the highest MIC for erythromycin (MIC=2048 microg mL(-1)). This study reports the presence of transition mutations in the V region of 23S rRNA genes that most probably account for high-level erythromycin resistance observed for the first time in human vaginal lactobacilli. | 2009 | 19619642 |
| 5981 | 5 | 0.9991 | Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive. | 1996 | 8723458 |
| 5941 | 6 | 0.9991 | Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy. | 2011 | 21081549 |
| 5996 | 7 | 0.9991 | Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis. | 2008 | 17957105 |
| 5848 | 8 | 0.9991 | Plasmid and chromosomal basis of tolerance to cadmium and resistance to antibiotics in normal bovine duodenal bacterial flora. Cadmium (Cd) tolerance and antibiotic resistance was studied in duodenal flora of 20 normal bovine samples. Twelve bacterial isolates (5 Staphylococcus spp, 4 Enterococcus faecalis, 2 Bacillus spp, and a Pseudomonas sp) were grown in Luria broth containing 0.05 to 0.8 mM of cadmium chloride (CdCl). All isolates displayed multiple antibiotic resistance, with 2 Enterococcus strains and Pseudomonas pickettii demonstrating resistance to 12/17 antibiotics tested. With the exception of Staphylococcus sp, all contained plasmid DNA. Curing to remove plasmid DNA determined if Cd tolerance and/or antibiotic resistance was plasmid or chromosomally mediated. None of the bacteria became sensitive to CdCl after curing, suggesting that tolerance was not plasmid-mediated. Six bacteria became sensitive to antibiotics after curing indicating that antibiotic2 resistance was plasmid mediated. Two of these bacteria became sensitive to multiple antibiotics; a Staphylococcus sp became sensitive to ampicillin, ceftiofur and cephalothin, and a Enterococcus strain became sensitive to neomycin, oxacillin, and tiamulin. All of the isolates were probed for the presence of known Cd-resistance genes (cadA, cadC, and cadD). DNA-DNA hybridization revealed cadA- and cadC-related sequences in chromosomal DNA of a Staphylococcus sp, an Enterococcus strain, and in plasmid DNA of another Staphylococcus sp. No cadD-related sequences were detected in any of the 12 isolates even under reduced stringency of hybridization. | 2001 | 11383651 |
| 5937 | 9 | 0.9991 | Association of mutation patterns in GyrA and ParC genes with quinolone resistance levels in lactic acid bacteria. The quinolone resistance of 19 lactic acid bacterial strains belonging to the genera Enterococcus and Lactobacillus isolated from the natural fermented koumiss and yoghurt were investigated. The objective of this study was to determine the quinolone resistance levels and to explore the association of the resistance with the mutation patterns in gyrA and parC genes, as is currently recommended by the Food and Agriculture Organization/World Health Organization Joint Expert Committee in Guidelines for Evaluation of Probiotics in Food for probiotic lactic acid bacteria drug resistance in 2001. The Oxford Cup method and double-tube dilution method were used to determine the quinolone resistance levels of the isolated strains. Generally, all of the 19 strains showed resistance towards norfloxacin and ciprofloxacin when the Oxford cup method was used, whereas the incidence was lower (to norfloxacin 89.5% and to ciprofloxacin 68.4%) when minimum inhibitory concentration breakpoints (CLSI M100-S23) were tested. Furthermore, gene sequencing was conducted on gyrA and parC of topoisomerase II of these isolated strains. The genetic basis for quinolone resistance may be closely related to mutations in gyrA genes as there were 10 mutation sites in amino-acid sequences encoded by gyrA genes in 10 quinolone resistance strains and 14 mutation sites in Enterococcus durans HZ28, whereas no typical mutations were detected in parC genes. | 2015 | 25204345 |
| 5963 | 10 | 0.9991 | Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli. | 1998 | 9503630 |
| 5979 | 11 | 0.9990 | Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. Mutations in the genes for the subunits GyrA and ParC of the target enzymes DNA gyrase and topoisomerase IV are important mechanisms of resistance in quinolone-resistant bacteria, including Neisseria gonorrhoeae. The target enzymes also consist of the subunits GyrB and ParE, respectively, though their role in quinolone-resistance has not been fully investigated. We sequenced the quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE in 25 ciprofloxacin-resistant strains from Bangladesh (MIC 4-->32 mg/l) and 5 susceptible strains of N. gonorrhoeae. All the resistant strains had three or four mutations. Two of these were at positions 91 and 95 of gyrA. Fourteen strains had an additional mutation in parC at position 91, and 17 strains had an additional mutation in parE in position 439. No alterations were found in gyrB. The five susceptible strains had identical DNA sequences. Data indicate that the mutations detected in the QRDR of gyrA and parC may be important in the development of quinolone resistance. According to transformation experiments we assume that the alteration in parE is not related to a high degree of quinolone resistance. There was no correlation between ciprofloxacin MICs and pattern or number of mutations in the target genes. | 2002 | 12529019 |
| 5966 | 12 | 0.9990 | Identification of the Molecular Mechanism of Trimethoprim Resistance in Listeria monocytogenes. Trimethoprim with sulfamethoxazole is a therapeutic agent combination used to treat infections caused by the facultative intracellular foodborne pathogen Listeria monocytogenes. The aim of this study was to assess the frequency of resistance of L. monocytogenes arising due to exposure to trimethoprim and subsequently investigate the molecular mechanisms of resistance. After exposure of a culture of L. monocytogenes ATCC 13932 to trimethoprim at 10-fold the minimal inhibitory concentration spontaneous resistant mutants were recovered, giving a frequency of resistance development of 6.85 ± 0.92 × 10(-8). The isolates exhibited a 32-64-fold decrease in susceptibility compared with the parental strain. These results indicate the capacity of L. monocytogenes to develop low-level resistance toward trimethoprim after exposure to the drug. The trimethoprim resistance genes (dhfr) and their promoter regions from all trimethoprim-resistant isolates were amplified and sequenced, leading to the identification of four single amino acid substitutions (Met20-Val, Pro21-Leu, Thr46-Asn, Val95-Leu) and two double substitutions (Met20-Ile+Thr46-Asn and Thr46-Asn+Leu85-Phe) in DHFR. Of the identified mutations, the Thr46-Asn substitution has not been previously reported as the mechanism of resistance to trimethoprim in other bacteria; thus this substitution seems to be unique to L. monocytogenes. The expression of the mutated L. monocytogenes dhfr genes in Escherichia coli led to decreased susceptibility of the heterological host, therefore proving that the identified point mutations in dhfr serve as the molecular mechanism of acquired resistance of L. monocytogenes to trimethoprim. | 2017 | 28910155 |
| 5933 | 13 | 0.9990 | Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. The aim of this study was to determine whether mef(C) and mph(G), originally found on the transferable multi-drug plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from seawater of a fish farm, are responsible for conferring macrolide resistance. Since these genes are localized head-to-tail on pAQU1 and only four nucleotides exist between them, the single- and combination-effect of these genes was examined. When mph(G) alone was introduced to Escherichia coli, the minimum inhibitory concentrations (MICs) against erythromycin, clarithromycin and azithromycin increased, whereas introduction of mef(C) alone did not influence macrolide susceptibility. Introduction of both mef(C) and mph(G) dramatically increased the MICs to the same three macrolides, i.e. >512 μg ml(-1) , >512 μg ml(-1) and 128 μg ml(-1) respectively. These results suggest that the macrolide phosphotransferase encoded by mph(G) is essential for macrolide resistance, while the efflux pump encoded by mef(C) is required for high-level macrolide resistance. The tandem-pair arrangements of the mef(C) and mph(G) genes were conserved on plasmids ranging in size from 240 to 350 kb of the 22 erythromycin-resistant strains belonging to Vibrio and Photobacterium obtained from the fish farm. Sixteen of 22 plasmids ranged in size from 300 to 350 kb. This is the first report of novel macrolide resistance genes originating from a marine bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, mef(C) and mph(G) were found to be novel macrolide-resistance genes, and this is the first report of macrolide-resistance genes originating from a marine bacterium. These genes may be responsible for previously reported cases of the emergence of erythromycin-resistant bacteria in aquaculture sites by an unknown mechanism. The introduction of the tandem arrangement of the mef(C) and mph(G) genes in Escherichia coli increased the MICs to erythromycin, clarithromycin and azithromycin, suggesting a novel mechanism conferring high-level macrolide resistance via combined expression of the efflux pump and macrolide phosphotransferase. | 2015 | 25765542 |
| 3567 | 14 | 0.9990 | Cloning and sequence analysis of ermQ, the predominant macrolide-lincosamide-streptogramin B resistance gene in Clostridium perfringens. The erythromycin resistance determinant from Clostridium perfringens JIR100 has been cloned, sequenced, and shown to be expressed in Escherichia coli. An open reading frame with sequence similarity to erm genes from other bacteria was identified and designated the ermQ gene. On the basis of comparative sequence analysis, it was concluded that the ermQ gene represented a new Erm hybridization class, designated ErmQ. Genes belonging to the ErmQ class were found to be widespread in C. perfringens, since 30 of 38 macrolide-lincosamide-streptogramin B-resistant C. perfringens strains, from diverse sources, hybridized to an ermQ-specific gene probe. The ermQ gene therefore represents the most common erythromycin resistance determinant in C. perfringens. | 1994 | 8067735 |
| 5229 | 15 | 0.9990 | Paradoxical High-Level Spiramycin Resistance and Erythromycin Susceptibility due to 23S rRNA Mutation in Streptococcus constellatus. Objectives: The aim of the study was to characterize phenotypically and genotypically an uncommon mechanism of resistance to macrolides, lincosamides, and streptogramins (MLS) in a Streptococcus milleri group clinical isolate. Materials and Methods: The isolate UCN96 was recovered from an osteoradionecrosis wound, and was identified using the matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and the partial sequencing of the sodA gene. Antimicrobial susceptibility testing were carried out by the disk diffusion method and minimal inhibitory concentrations (MICs) were determined by the broth microdilution technique. PCR screening was performed for MLS resistance genes described in Gram-positive bacteria. Specific mutations in the ribosomal proteins L3-, L4-, and L22-encoding genes were also screened and those in domain V of the 23S rRNA gene (rrl). The number of mutated copies of the rrl gene was determined using amplification-refractory mutation system quantitative-polymerase chain reaction (qPCR) analysis. Results: The clinical isolate UCN96 was unambiguously identified as Streptococcus constellatus. It was susceptible to all macrolides and lincosamides (ML) antibiotics except spiramycin (MIC >256 mg/L) while it was also resistant to streptogramins. Screening for all acquired resistance genes was negative and no mutation was found in genes coding for L3, L4, and L22 ribosomal proteins. Of interest, a single mutation, A2062C (according to Escherichia coli numbering), was detected in the domain V of 23S rRNA. Conclusion: Mutations at the position 2062 of 23S rRNA have been detected once in Streptococcus pneumoniae, and not yet in other Streptococcus spp. This mechanism is very likely uncommon in Gram-positive bacteria because different copies of 23S rRNA operons should be mutated for development of such a resistance pattern. | 2020 | 32031922 |
| 5980 | 16 | 0.9990 | Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. The gyrA gene mutations associated with quinolone resistance were determined in 21 epidemiologically unrelated clinical isolates of Acinetobacter baumannii. Our studies highlight the conserved sequences in the quinolone resistance-determining region of the gyrA gene from A. baumannii and other bacteria. All 15 isolates for which the MIC of ciprofloxacin is > or = 4 micrograms/ml showed a change at Ser-83 to Leu. Six strains for which the MIC of ciprofloxacin is 1 microgram/ml did not show any change at Ser-83, although a strain for which the MIC of ciprofloxacin is 1 microgram/ml exhibited a change at Gly-81 to Val. Although it is possible that mutations in other locations of the gyrA gene, the gyrB gene, or in other genes may also contribute to the modulation of the MIC level, our results suggest that a gyrA mutation at Ser-83 is associated with quinolone resistance in A. baumannii. | 1995 | 7625818 |
| 5850 | 17 | 0.9990 | Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria. | 2004 | 15358427 |
| 5224 | 18 | 0.9990 | The novel macrolide resistance genes mef(F) and msr(G) are located on a plasmid in Macrococcus canis and a transposon in Macrococcus caseolyticus. OBJECTIVES: To analyse macrolide resistance in a Macrococcus canis strain isolated from a dog with an ear infection, and determine whether the resistance mechanism is also present in other bacteria, and associated with mobile genetic elements. METHODS: The whole genome of M. canis Epi0082 was sequenced using PacBio and Illumina technologies. Novel macrolide resistance determinants were identified through bioinformatic analysis, and functionality was demonstrated by expression in Staphylococcus aureus. Mobile genetic elements containing the novel genes were analysed in silico for strain Epi0082 as well as in other bacterial strains deposited in GenBank. RESULTS: M. canis Epi0082 contained a 3212 bp operon with the novel macrolide resistance genes mef(F) and msr(G) encoding a efflux protein and an ABC-F ribosomal protection protein, respectively. Cloning in S. aureus confirmed that both genes individually confer resistance to the 14- and 15-membered ring macrolides erythromycin and azithromycin, but not the 16-membered ring macrolide tylosin. A reduced susceptibility to the streptogramin B pristinamycin IA was additionally observed when msr(G) was expressed in S. aureus under erythromycin induction. Epi0082 carried the mef(F)-msr(G) operon together with the chloramphenicol resistance gene fexB in a novel 39 302 bp plasmid pMiCAN82a. The mef(F)-msr(G) operon was also found in macrolide-resistant Macrococcus caseolyticus strains in the GenBank database, but was situated in the chromosome as part of a novel 13 820 bp or 13 894 bp transposon Tn6776. CONCLUSIONS: The identification of mef(F) and msr(G) on different mobile genetic elements in Macrococcus species indicates that these genes hold potential for further dissemination of resistance to the clinically important macrolides in the bacterial population. | 2021 | 33118027 |
| 5998 | 19 | 0.9990 | Complete genome sequence of a tetracycline-resistant Streptococcus mutans strain carrying the tet(M) gene. INTRODUCTION: Tetracyclines are widely used in dental treatment. Here, we report the genomic information of the tetracycline-resistant Streptococcus mutans strain, HSM45, for the first time. METHODS: Susceptibility to tetracycline was determined using the microdilution method. The complete genome sequence of HSM45 was determined and compared with public genome data. RESULTS: HSM45 was resistant to tetracycline. The tetracycline resistance gene tet(M) was carried by Tn916, a conjugative transposon that is widely found in Gram-positive bacteria. CONCLUSION: This study showed that S. mutans can acquire tetracycline resistance and it can also be a source of horizontal transfer of resistance genes. | 2025 | 40545135 |