# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5214 | 0 | 1.0000 | Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants. | 2018 | 29479501 |
| 5199 | 1 | 0.9987 | Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. BACKGROUND: Chryseobacterium indologenes is an emerging opportunistic pathogen in hospital-acquired infection, which is intrinsically resistant to most antimicrobial agents against gram-negative bacteria. In the purpose of extending our understanding of the resistance mechanism of C. indologenes, we sequenced and analyzed the genome of an extensively antibiotic resistant C. indologenes strain, isolated from a Chinese prostate cancer patient. We also investigated the presence of antibiotic resistance genes, particularly metallo-β-lactamase (MBL) genes, and performed a comparative genomic analysis with other Chryseobacterium species. RESULTS: 16s rRNA sequencing indicated the isolate belongs to C. indologenes. We assembled a total of 1095M bp clean-filtered reads into 171 contigs by de novo assembly. The draft genome of C. indologenes J31 consisted of 5,830,795 bp with a GC content of 36.9 %. RAST analysis revealed the genome contained 5196 coding sequences (CDSs), 28 rRNAs, 81 tRNAs and 114 pseudogenes. We detected 90 antibiotic resistance genes from different drug classes in the whole genome. Notably, a novel bla(IND) allele bla(IND-16) was identified, which shared 99 % identity with bla(IND-8) and bla(IND-10). By comparing strain J31 genome to the closely four related neighbors in the genus Chryseobacterium, we identified 2634 conserved genes, and 1449 unique genes. CONCLUSIONS: In this study, we described the whole genome sequence of C. indologenes strain J31. Numerous resistance determinants were detected in the genome and might be responsible for the extensively antibiotic resistance of this strain. Comparative genomic analysis revealed the presence of considerable strain-specific genes which would contribute to the distinctive characteristics of strain J31. Our study provides the insight of the multidrug resistance mechanism in genus Chryseobacterium. | 2016 | 27785154 |
| 5200 | 2 | 0.9985 | Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (bla (IND-13), bla (CIA-3), bla (TEM-116), bla (OXA-209), bla (VEB-15)), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings. | 2022 | 35966843 |
| 1997 | 3 | 0.9984 | Genetic Characterization of bla (CTX-M-55) -Bearing Plasmids Harbored by Food-Borne Cephalosporin-Resistant Vibrio parahaemolyticus Strains in China. This study aims to investigate and compare the complete nucleotide sequences of the multidrug resistance plasmids pVb0267 and pVb0499, which were recovered from foodborne Vibrio parahaemolyticus isolates, and analyze the genetic environment of bla(CTX-M-55) to provide insight into the dissemination mechanisms of this resistance element. Analysis of the sequences of plasmids pVb0267 (166,467 bp) and pVb0499 (192,739 bp) revealed that the backbones of these two plasmids exhibited a high degree of similarity with pR148, a recognized type 1a IncC plasmid recovered from Aeromonas hydrophila (99% identity). The resistance genes, found in both plasmids, included qacH, aadB, arr2, bla (OXA-10) , aadA1, sul1, tet(A), and bla (CTX-M-55), which were mostly arranged in a specific region designated ARI-A. Plasmid pVb0499 was found to possess a larger size of ARI-A than pVb0267, which lacked a mer determination region, a qnr A segment, an aacC3 gene and several mobility-encoding genes. Comparative analysis of resistance island (RI) of these plasmids and others revealed the potential evolution route of these RI sequences. In conclusion, plasmids harboring the bla (CTX-M-55) gene has been recovered in Vibrio parahaemolyticus strains of food origin. It is alarming to find that IncC plasmids harboring resistance islands are disseminating in aquatic bacterial strains. The continuous evolution of resistance genes in conjugative plasmid in aquatic bacteria could be due to bacterial adaption to aquaculture environment, where antibiotics were increasingly used. | 2019 | 31275270 |
| 6086 | 4 | 0.9983 | Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na(2)HAsO(4)·7H(2)O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level. | 2024 | 39320439 |
| 1788 | 5 | 0.9983 | Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. OBJECTIVES: Stenotrophomonas is a genus of Gram-negative bacteria with several potential industrial uses as well as an increasingly relevant pathogen that may cause dangerous nosocomial infections. Here we present the draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 isolated from radiation-polluted soil in Xinjiang Uyghur Autonomous Region, China. METHODS: The genome of Stenotrophomonas sp. B1-1 was sequenced using a BGISEQ-500 platform. The generated sequencing reads were de novo assembled using SOAPdenovo and the resulting sequences were predicted and annotated to identify antimicrobial resistance genes and virulence factors using the ARDB and VFDB databases, respectively. RESULTS: The Stenotrophomonas sp. B1-1 genome assembly resulted in a total genome size of 4,723,769 bp with a GC content of 67.47%. There were 4280 predicted genes with 68 tRNAs, 2 rRNAs and 163 sRNAs. A number of antimicrobial resistance genes were identified conferring resistance to various antibiotics as well as numerous virulence genes. CONCLUSION: The genome sequence of Stenotrophomonas sp. B1-1 will provide timely information for comparison of the Stenotrophomonas genus and to help further understand the pathogenesis and antimicrobial resistance of this genus. | 2021 | 33373734 |
| 6138 | 6 | 0.9983 | Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments. | 2020 | 32405446 |
| 5197 | 7 | 0.9982 | Genome analysis of NDM-1 producing Morganella morganii clinical isolate. OBJECTIVE: To analyze the resistome and virulence genes of Morganella morganii F675, a multidrug-resistant clinical isolate using whole genome sequencing (WGS). METHODS: M. morganii F675 was isolated from a patient from Jerusalem, Israel. WGS was performed using both 454 and SOLiD sequencing technologies. Analyses of the bacterial resistome and other virulence genes were performed in addition to comparison with other available M. morganii genomes. RESULTS: The assembled sequence had a genome size of 4,127,528 bp with G+C content of 51%. The resistome consisted of 13 antibiotic resistance genes including blaNDM-1 located in a plasmid likely acquired from Acinetobacter spp. Moreover, we characterized for the first time the whole lipid A biosynthesis pathway in this species along with the O-antigen gene cluster, the urease gene cluster and several other virulence genes. CONCLUSION: The WGS analysis of this pathogen further provides insight into its pathogenicity and resistance to antibiotics. | 2014 | 25081858 |
| 5151 | 8 | 0.9982 | Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches. | 2021 | 34659348 |
| 1641 | 9 | 0.9982 | Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Previous work found a high similarity of macro-restriction patterns for isolates of Yersinia enterocolitica 4/O:3 obtained at a pork production chain from Minas Gerais, Brazil. Herein we aimed to determine the clonality and the antibiotic resistance profiles of a subset of these isolates (n = 23) and human clinical isolates (n = 3). Analysis based on whole genome sequencing (WGS) showed that the isolates were distributed into two major clades based on single nucleotide polymorphisms (SNP) with one isolate defining Clade A (isolate R31) and remaining isolates (n = 25, 96.2%) defining Clade B. Seven clonal groups were identified. The inclusion of isolate R31 as a distinct clonal group was due to the presence of several phage-related genes, allowing its characterization as serotype O:5 by WGS. Disk-diffusion assays (14 antibiotics) identified 13 multidrug resistant isolates (50.0%). Subsequent sequence analysis identified 17 different antibiotic resistance related genes. All isolates harbored blaA (y56 beta-lactamase), vatF, rosA, rosB and crp, while nine isolates harbored a high diversity of antibiotic resistance related genes (n = 13). The close genetic relationship among Y. enterocolitica obtained from a pork production chain and human clinical isolates in Brazil was confirmed, and we can highlight the role of swine in the potential transmission of an antibiotic-resistant clones of a pathogenic bio-serotype to humans, or the transmission of these resistant bacteria from people to animals. The role of veterinary antibiotic use in this process is unclear. | 2022 | 35181088 |
| 1566 | 10 | 0.9982 | Accumulation of Antibiotic Resistance Genes in Carbapenem-Resistant Acinetobacter baumannii Isolates Belonging to Lineage 2, Global Clone 1, from Outbreaks in 2012-2013 at a Tehran Burns Hospital. The worldwide distribution of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a global concern, particularly in countries where antibiotic prescription is not tightly regulated. However, knowledge of the genomic aspects of CRAB from many parts of the world is still limited. Here, 50 carbapenem-resistant A. baumannii isolates recovered at a single hospital in Tehran, Iran, during several outbreaks in 2012 and 2013 were found to be resistant to multiple antibiotics. They were examined using PCR mapping and multilocus sequence typing (MLST). All Iranian strains belonged to sequence type 328 in the Institut Pasteur MLST scheme (ST328(IP)), a single-locus variant of ST81(IP,) and all Iranian strains contained two carbapenem resistance genes, oxa23 and oxa24. The oxa23 gene is in the transposon Tn2006 in AbaR4, which interrupts the chromosomal comM gene. Phylogenetic analysis using whole-genome sequence (WGS) data for 9 isolates showed that they belonged to the same clade, designated the ST81/ST328 clade, within lineage 2 of global clone 1 (GC1). However, there were two groups that included either KL13 or KL18 at the K locus (KL) for capsular polysaccharide synthesis and either a tet39 or an aadB resistance gene, respectively. The genetic context of the resistance genes was determined, and the oxa24 (OXA-72 variant) and tet39 (tetracycline resistance) genes were each in a pdif module in different plasmids. The aadB gene cassette (which encodes gentamicin, kanamycin, and tobramycin resistance) was harbored by pRAY*, and the aphA6 gene (which encodes amikacin resistance) and sul2 gene (which encodes sulfamethoxazole resistance) were each harbored by a different plasmid. The sequences obtained here will underpin future studies of GC1 CRAB strains from the Middle East region.IMPORTANCE Carbapenem-resistant Acinetobacter baumannii strains are among the most critical antibiotic-resistant bacteria causing hospital-acquired infections and treatment failures. The global spread of two clones has been responsible for the bulk of the resistance, in particular, carbapenem resistance. However, there is a substantial gap in our knowledge of which clones and which specific lineages within each clone are circulating in many parts of the world, including Africa and the Middle East region. This is the first genomic analysis of carbapenem-resistant A. baumannii strains from Iran. All the isolates, from a single hospital, belonged to lineage 2 of global clone 1 (GC1) but fell into two groups distinguished by genes in the locus for capsule biosynthesis. The analysis suggests a potential origin of multiply antibiotic-resistant lineage 2 in the Middle East region and highlights the ongoing evolution of carbapenem-resistant GC1 A. baumannii strains. It will enhance future studies on the local and global GC1 population structure. | 2020 | 32269158 |
| 1982 | 11 | 0.9982 | Comamonas resistens Co-Producing GES-5 and OXA-17 in Urban Wastewater as a Potential Novel Disseminator of Clinically Relevant β-Lactamases. Comamonas species have been isolated from different sources, with Comamonas testosteroni and Comamonas resistens commonly related to human diseases and multidrug resistance, respectively. During a surveillance study to monitor carbapenem resistance in bacteria from wastewater samples in Brazil, a carbapenem-resistant strain, named M13, was obtained and identified as C. resistens (ANI 98.90%, dDDH 94.60%) by genomic analysis, being a species distinct from C. testosteroni. It exhibited multidrug resistance and presented small inhibition zones around disks containing novel β-lactams and β-lactam-β-lactamase inhibitor combinations. Comparative genomics showed significant single nucleotide polymorphism divergence between M13 and other C. resistens genomes, suggesting geographically driven genomic diversity. Strain M13 uniquely harbored genes related to antimicrobial resistance and metal tolerance as follows: bla(GES-5) (carbapenem resistance), bla(OXA-17) (third-generation cephalosporin resistance), mer operon (mercury tolerance), and pco operon (copper tolerance). The bla(GES-5) and bla(OXA-17) genes were located on distinct plasmids that lacked conjugative genes but contained mobilization elements, indicating the potential for horizontal transfer. Unlike C. resistens strains from China, M13 strain may have acquired clinically relevant antimicrobial resistance genes via interactions with Brazilian microbial communities. These findings highlight the relevance of monitoring Comamonas species as potential reservoirs and disseminators of clinically relevant antimicrobial resistance genes and underscore the need for environmental monitoring of carbapenem-resistant strains. | 2025 | 40719913 |
| 2008 | 12 | 0.9982 | Genomic Epidemiology of Vibrio cholerae O139, Zhejiang Province, China, 1994-2018. Cholera caused by Vibrio cholerae O139 was first reported in Bangladesh and India in 1992. To determine the genomic epidemiology and origins of O139 in China, we sequenced 104 O139 isolates collected from Zhejiang Province, China, during 1994-2018 and compared them with 57 O139 genomes from other countries in Asia. Most Zhejiang isolates fell into 3 clusters (C1-C3), which probably originated in India (C1) and Thailand (C2 and C3) during the early 1990s. Different clusters harbored different antimicrobial resistance genes and IncA/C plasmids. The integrative and conjugative elements carried by Zhejiang isolates were of a new type, differing from ICEVchInd4 and SXT(MO10) by single-nucleotide polymorphisms and presence of genes. Quinolone resistance-conferring mutations S85L in parC and S83I in gyrA occurred in 71.2% of the Zhejiang isolates. The ctxB copy number differed among the 3 clusters. Our findings provided new insights for prevention and control of O139 cholera . | 2022 | 36285907 |
| 1790 | 13 | 0.9982 | Insights from the genome sequence of Bacillus tropicus EMB20, an efficient β-lactamase-producing bacterium. We report here the whole-genome sequence of β-lactamase-producing bacteria Bacillus tropicus EMB20. The genome sequence of Bacillus tropicus EMB20 has a size of 5.8 Mb (G + C content of 35.52%) with 5593 coding DNA sequences (CDSs), 108 tRNA, and 14 rRNA operons. The bacterium has the unique ability to produce a β-lactamase enzyme with high activity. β-Lactamases are one of the most common causes of antimicrobial resistance as these enzymes inactivate almost all β-lactam antibiotics. The antibiotic susceptibility test showed that the B. tropicus EMB20 is producing β-lactamase and can degrade the β-lactam antibiotics. Further, the antibiotic degradation potential of this bacteria was confirmed by growing the bacteria in the presence of varying concentrations of β-lactam antibiotic, amoxicillin. The bacteria were able to hydrolyze amoxicillin up to 50 mg/L in 4 h. Furthermore, the analyses of the genome revealed the presence of multiple β-lactamase genes, possibly involved in antibiotic degradation. The availability of the genome sequence will provide further insights into the mechanism of antimicrobial resistance by β-lactamase-producing bacteria. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03395-w. | 2022 | 36304438 |
| 1184 | 14 | 0.9982 | Prevalence and Genetic Analysis of Chromosomal mcr-3/7 in Aeromonas From U.S. Animal-Derived Samples. The prevalence of mcr-positive bacteria in 5,169 domestic animal-derived samples collected by USDA Food Safety and Inspection Service between October 2018 and May 2019 was investigated. A procedure including enriched broth culture and real-time PCR targeting mcr-1 to mcr-8 were used for the screening. Fifteen positive isolates were identified, including one plasmid-borne mcr-1-positive Escherichia coli strain, EC2492 (reported elsewhere) and 14 mcr-3/7-positive strains from poultry (1), catfish (2), and chicken rinse (11) samples, resulting in an overall prevalence of mcr-positive bacteria 0.29% in all meat samples tested. Analysis of 16S rRNA and whole genome sequences revealed that all 14 strains belonged to Aeromonas. Data from phylogenetic analysis of seven housekeeping genes, including gyrB, rpoD, gyrA, recA, dnaJ, dnaX, and atpD, indicated that nine strains belonged to Aeromonas hydrophila and five strains belonged to Aeromonas jandaei. Antimicrobial tests showed that almost all mcr-positive strains exhibited high resistance to colistin with MICs ≥ 128mg/L, except for one A. jandaei strain, which showed a borderline resistance with a MIC of 2 mg/L. A segment containing two adjacent mcr-3 and mcr-3-like genes was found in two A. hydrophila and one A. jandaei strains and a variety of IS-like elements were found in the flanking regions of this segment. A mcr-3-related lipid A phosphoethanolamine transferase gene was present in all 14 Aeromonas strains, while an additional mcr-7-related lipid A phosphoethanolamine transferase gene was found in 5 A. jandaei strains only. In addition to mcr genes, other antimicrobial resistance genes, including bla (OXA-12/OXA-724), aqu-2, tru-1, cepS, cphA, imiH, ceph-A3, ant(3″)-IIa, aac(3)-Via, and sul1 were observed in chromosomes of some Aeromonas strains. The relative high prevalence of chromosome-borne mcr-3/7 genes and the close proximity of various IS elements to these genes highlights the need for continued vigilance to reduce the mobility of these colistin-resistance genes among food animals. | 2021 | 33995332 |
| 2469 | 15 | 0.9981 | Whole genome analysis of multidrug-resistant Citrobacter freundii B9-C2 isolated from preterm neonate's stool in the first week. BACKGROUND: Resistance to colistin, the last line therapy for infections caused by multidrug-resistant Gram-negative bacteria, represents a major public health threat. Citrobacter freundii B9-C2 which was isolated from the stool of preterm neonate on the first week of life, displayed resistance to almost all major antibiotics, including colistin. Through whole genome sequencing (WGS), we characterised the genome features that underline the antibiotic-resistance phenotype of this isolate. METHODS: Genome of C. freundii B9-C2 was sequenced on an Illumina MiSeq platform. The assembled genome was annotated and deposited into GenBank under the accession number CP027849. RESULTS: Multiple antimicrobial resistance genes including bla(CMY-66) were identified. Further, the presence of 15 antibiotic efflux pump-encoding resistance genes, including crp, baeR, hns, patA, emrB, msbA, acrA, acrB, emrR, mdtC, mdtB, mdtG, kdpE, mdfA and msrB, were detected and likely to account for the observed cephalosporins, carbapenems, aminoglycosides and monobactams resistance in C. freundii B9-C2. The isolate also presented unique virulence genes related to biofilm formation, motility and iron uptake. The genome was compared to publicly available genomes and it was closely related to strains with environmental origins. CONCLUSION: To the best of our knowledge, this is the first report of intestinal carriage of colistin-resistant C. freundii from the stool of a neonate in Malaysia. Using genomic analysis, we have contributed to the understanding of the potential mechanism of resistance and the phylogenetic relationship of the isolates with draft genomes available in the public domain. | 2020 | 32304769 |
| 1777 | 16 | 0.9981 | Inter-phylum circulation of a beta-lactamase-encoding gene: a rare but observable event. Beta-lactamase-mediated degradation of beta-lactams is the most common mechanism of beta-lactam resistance in Gram-negative bacteria. Beta-lactamase-encoding genes can be transferred between closely related bacteria, but spontaneous inter-phylum transfers (between distantly related bacteria) have never been reported. Here, we describe an extended-spectrum beta-lactamase (ESBL)-encoding gene (bla(MUN-1)) shared between the Pseudomonadota and Bacteroidota phyla. An Escherichia coli strain was isolated from a patient in Münster (Germany). Its genome was sequenced. The ESBL-encoding gene (named bla(MUN-1)) was cloned, and the corresponding enzyme was characterized. The distribution of the gene among bacteria was investigated using the RefSeq Genomes database. The frequency and relative abundance of its closest homolog in the global microbial gene catalog (GMGC) were analyzed. The E. coli strain exhibited two distinct morphotypes. Each morphotype possessed two chromosomal copies of the bla(MUN-1) gene, with one morphotype having two additional copies located on a phage-plasmid p0111. Each copy was located within a 7.6-kb genomic island associated with mobility. bla(MUN-1) encoded for an extended-spectrum Ambler subclass A2 beta-lactamase with 43.0% amino acid identity to TLA-1. bla(MUN-1) was found in species among the Bacteroidales order and in Sutterella wadsworthensis (Pseudomonadota). Its closest homolog in GMGC was detected frequently in human fecal samples. This is, to our knowledge, the first reported instance of inter-phylum transfer of an ESBL-encoding gene, between the Bacteroidota and Pseudomonadota phyla. Although the gene was frequently detected in the human gut, inter-phylum transfer was rare, indicating that inter-phylum barriers are effective in impeding the spread of ESBL-encoding genes, but not entirely impenetrable. | 2024 | 38441061 |
| 6157 | 17 | 0.9981 | Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers. | 2012 | 21879358 |
| 1998 | 18 | 0.9981 | Characterization of a blaNDM‑1‑harboring plasmid from a Salmonella enterica clinical isolate in China. The plasmid-mediated transmission of antibiotic resistance genes has been reported to be involved in the development of antibiotic resistance in bacteria, and poses a serious threat for the success of bacterial infection treatment and human health worldwide. The present study used a 454 GS‑FLX pyrosequencing system to determine the ~140 kb nucleotide sequence of plasmid pHS36‑NDM, which was identified in a Salmonella Stanley isolate from the stool sample of an 11‑month‑old girl at Lishui Central Hospital, China, and which contains a New Delhi metallo‑β‑lactamase‑1 (NDM‑1) carbapenem resistance gene (blaNDM‑1). The 181 open reading frames encode proteins with functions including replication, stable inheritance, antibiotic resistance and mobile genetic elements. Both horizontal transfer and passage stability‑related genes were identified in pHS36‑NDM, including a conserved type 4 secretion system and stbA (stable plasmid inheritance protein A). Two multidrug resistance gene islands were identified: The ISEcp1‑blaCMY transposition unit which contains a CMY‑6 β‑lactamase gene (blaCMY‑6) and a quaternary ammonium compound resistance gene (sugE); and the intI1‑ISCR27 accessory region, which contained a trimethoprim resistance gene (dfrA12), two aminoglycoside resistance genes (aadA2 and rmtC), a truncated quaternary ammonium compound resistance gene (qacE∆1), a sulfonamide resistance gene (sul1), the blaNDM‑1 carbapenemase and a bleomycin resistance gene (bleMBL). pHS36‑NDM shared high homology with other blaNDM‑1‑containing plasmids reported in Sweden, Italy and Japan. However, no previous international travel history was documented for the patient and her family, even to neighboring cities. Furthermore, pHS36‑NDM is of a different incompatibility group to other published blaNDM‑1‑carrying plasmids reported in China, with low homology in the surrounding structure of blaNDM‑1. The present study will facilitate the understanding of the underlying resistance and dispersal mechanism of pHS36‑NDM, and will deepen our recognition of the ongoing spread of the blaNDM‑1‑containing plasmids. | 2017 | 28627648 |
| 5141 | 19 | 0.9981 | Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023(T) and P7388(T) were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed. | 2021 | 34745033 |