Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
518901.0000Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota.202134162403
546810.9990Whole-genome sequence of a putative pathogenic Bacillus sp. strain SD-4 isolated from cattle feed. OBJECTIVES: The present study describes the draft genome sequence of a novel Bacillus sp. strain SD-4 isolated from animal feed. The study aims to get a deeper insight into antimicrobial resistance and secondary metabolite biosynthetic gene clusters (BGCs) and the association between them. METHODS: The strain SD-4 was preliminarily evaluated for antibacterial activities, motility, biofilm formation, and enterotoxin production using in vitro assays. The genome of strain SD-4 was sequenced using the Illumina HiSeq 2500 platform with paired-end reads. The reads were assembled and annotated using SPAdes and PGAP, respectively. The genome was further analysed using several bioinformatics tools, including TYGS, AntiSMASH, RAST, PlasmidFinder, VFDB, VirulenceFinder, CARD, PathogenFinder, MobileElement finder, IslandViewer, and CRISPRFinder. RESULTS: In vitro assays showed that the strain is motile, synthesises biofilm, and produces an enterotoxin and antibacterial metabolites. The genome analysis revealed that the strain SD-4 carries antimicrobial resistance genes (ARGs), virulence factors, and beneficial secondary metabolite BGCs. Further genome analysis showed interesting genome architectures containing several mobile genetic elements, including two plasmid replicons (repUS22 and rep20), five prophages, and at least four genomic islands (GIs), including one Listeria pathogenicity island LIPI-1. Moreover, the strain SD-4 is identified as a putative human pathogen. CONCLUSION: The genome of strain SD-4 harbours several BGCs coding for biologically active metabolites. It also contains antimicrobial resistance genes and is identified as a potential human pathogen. These results can be used to better comprehend antibiotic resistance in environmental bacteria that are not influenced by human intervention.202235413450
514920.9990Complete genome sequence and comparative genomic analysis of Enterococcus faecalis EF-2001, a probiotic bacterium. Enterococcus faecalis is a common human gut commensal bacterium. While some E. faecalis strains are probiotic, others are known to cause opportunistic infections, and clear distinction between these strains is difficult using traditional taxonomic approaches. In this study, we completed the genome sequencing of EF-2001, a probiotic strain, using our in-house hybrid assembly approach. Comparative analysis showed that EF-2001 was devoid of cytolysins, major factors associated with pathogenesis, and was phylogenetically distant from pathogenic E. faecalis V583. Genomic analysis of strains with a publicly available complete genome sequence predicted that drug-resistance genes- dfrE, efrA, efrB, emeA, and lsaA were present in all strains, and EF-2001 lacked additional drug-resistance genes. Core- and pan-genome analyses revealed a higher degree of genomic fluidity. We found 49 genes specific to EF-2001, further characterization of which may provide insights into its diverse biological activities. Our comparative genomic analysis approach could help predict the pathogenic or probiotic potential of E. faecalis leading to an early distinction based on genome sequences.202133771633
178830.9990Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. OBJECTIVES: Stenotrophomonas is a genus of Gram-negative bacteria with several potential industrial uses as well as an increasingly relevant pathogen that may cause dangerous nosocomial infections. Here we present the draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 isolated from radiation-polluted soil in Xinjiang Uyghur Autonomous Region, China. METHODS: The genome of Stenotrophomonas sp. B1-1 was sequenced using a BGISEQ-500 platform. The generated sequencing reads were de novo assembled using SOAPdenovo and the resulting sequences were predicted and annotated to identify antimicrobial resistance genes and virulence factors using the ARDB and VFDB databases, respectively. RESULTS: The Stenotrophomonas sp. B1-1 genome assembly resulted in a total genome size of 4,723,769 bp with a GC content of 67.47%. There were 4280 predicted genes with 68 tRNAs, 2 rRNAs and 163 sRNAs. A number of antimicrobial resistance genes were identified conferring resistance to various antibiotics as well as numerous virulence genes. CONCLUSION: The genome sequence of Stenotrophomonas sp. B1-1 will provide timely information for comparison of the Stenotrophomonas genus and to help further understand the pathogenesis and antimicrobial resistance of this genus.202133373734
514840.9989Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. This study investigates the genomic features and probiotic potential of Lactiplantibacillus plantarum HMX2, isolated from Chinese Sauerkraut, using whole-genome sequencing (WGS) and bioinformatics for the first time. This study also aims to find genetic diversity, antibiotic resistance genes, and functional capabilities to help us better understand its food safety applications and potential as a probiotic. L. plantarum HMX2 was cultured, and DNA was extracted for WGS. Genomic analysis comprised average nucleotide identity (ANI) prediction, genome annotation, pangenome, and synteny analysis. Bioinformatics techniques were used to identify CoDing Sequences (CDSs), transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, and antibiotic resistance genes, as well as to conduct phylogenetic analysis to establish genetic diversity and evolution. The study found a significant genetic similarity (99.17% ANI) between L. plantarum HMX2 and the reference strain. Genome annotation revealed 3,242 coding sequences, 65 tRNA genes, and 16 rRNA genes. Significant genetic variety was found, including 25 antibiotic resistance genes. A phylogenetic study placed L. plantarum HMX2 among closely related bacteria, emphasizing its potential for probiotic and food safety applications. The genomic investigation of L. plantarum showed essential genes, including plnJK and plnEF, which contribute to antibacterial action against foodborne pathogens. Furthermore, genes such as MurA, Alr, and MprF improve food safety and probiotic potential by promoting bacterial survival under stress conditions in food and the gastrointestinal tract. This study introduces the new genomic features of L. plantarum HMX2 about specific genetics and its possibility of relevant uses in food security and technologies. These findings of specific genes involved in antimicrobial activity provide fresh possibilities for exploiting this strain in forming probiotic preparations and food preservation methods. The future research should focus on the experimental validation of antibiotic resistance genes, comparative genomics to investigate functional diversity, and the development of novel antimicrobial therapies that take advantage of L. plantarum's capabilities.202439611087
839250.9988Identification of variable genomic regions related to stress response in Oenococcus oeni. The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions.201729195994
519060.9988Genomic Analysis of Cronobacter condimenti s37: Identification of Resistance and Virulence Genes and Comparison with Other Cronobacter and Closely Related Species. Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the Cronobacter condimenti strain s37 to screen for genes encoding for antibiotic resistance, virulence, response to environmental stress, and biofilm formation. The strain was isolated in Poland from commercial small radish sprouts. This is the second genome of this species available in the GenBank database. The comparative genome analysis (cgMLST) of C. condimenti s37 with other Cronobacter spp. including the pathogenic species C. sakazakii and the plant-associated closely related genera Franconibacter and Siccibacter was also performed. The assembled and annotated genome of the C. condimenti s37 genome was 4,590,991 bp in length, with a total gene number of 4384, and a GC content of 55.7%. The s 37 genome encoded for genes associated with resistance to stressful environmental conditions (metal resistance genes: zinc, copper, osmotic regulation, and desiccation stress), 17 antimicrobial resistance genes encoding resistance to various classes of antibiotics and 50 genes encoding for the virulence factors. The latter were mainly genes associated with adhesion, chemotaxis, hemolysis, and biofilm formation. Cg-MLST analysis (3991 genes) revealed a greater similarity of C. condimenti s37 to S. turicensis, F. pulveris, and C. dublinensis than to other species of the genus Cronobacter. Studies on the diversity, pathogenicity, and virulence of Cronobacter species isolated from different sources are still insufficient and should certainly be continued. Especially the analysis of rare strains such as s37 is very important because it provides new information on the evolution of these bacteria. Comparative cgMLST analysis of s37 with other Cronobacter species, as well as closely related genera Franconibacter and Siccibacter, complements the knowledge on their adaptability to specific environments such as desiccation.202439201307
613970.9988Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications.202338616876
47080.9988Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes). Endospore formation is a specific property found within bacteria belonging to the Gram-type-positive low G+C mol% branch ( Firmicutes) of a phylogenetic tree based on 16S rRNA genes. Within the Gram-type-positive bacteria, endospore-formers and species without observed spore formation are widely intermingled. In the present study, a previously reported experimental method (PCR and Southern hybridization assays) and analysis of genome sequences from 52 bacteria and archaea representing sporulating, non-spore-forming, and asporogenic species were used to distinguish non-spore-forming (void of the majority of sporulation-specific genes) from asporogenic (contain the majority of sporulation-specific genes) bacteria. Several sporulating species lacked sequences similar to those of Bacillus subtilis sporulation genes. For some of the genes thought to be sporulation specific, sequences with weak similarity were identified in non-spore-forming bacteria outside of the Gram-type-positive phylogenetic branch and in archaea, rendering these genes unsuitable for the intended classification into sporulating, asporogenic, and non-spore-forming species. The obtained results raise questions regarding the evolution of sporulation among the Firmicutes.200415340788
357990.9988The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp. lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open reading frame encoding a hypothetical protein, which exhibited a similar GC content (51-53%). These genes were positioned in the same genomic context within the examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in a clade separate from tet(W) of other species and genera. This is not the case for tet(W) encoded by other bifidobacteria and other species where tet(W) is often found in association with transferable elements or in different genomic regions. An IS5-like element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found in a human gut related bacterium, but it was not associated with any tet(W) genes. This suggests that the IS5-like element is not associated with genetic mobility. tet(W) and the IS5 element have previously been shown to be co-transcribed, indicating that co-localization may be associated with tet(W) expression. Here, we present a method where phylogenetic and in silico genome analysis can be used to determine whether antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby possess a negligible risk of transfer.202134335493
4457100.9988Using genomics to explore the epidemiology of vancomycin resistance in a sewage system. VanHAX-mediated glycopeptide resistance has been consistently high in one of the three main sewer systems in Copenhagen, Lynetten, for +20 years. To explore this for other glycopeptide resistance genes, and whether the colonization has resulted in establishment of multiple bacterial taxa, we mapped 505 shotgun metagenomic data sets from the inlet of three sewage treatment plants to 831 different glycopeptide resistance genes. Only vanHAX and vanHBX genes were differentially abundant in Lynetten. Analyses of eight contigs suggested limited variations in the flanking regions. Proximity ligation metagenomic analysis of 12 samples from Lynetten identified 441 and 5 paired reads mapping to vanHAX and vanHBX, respectively. The other end of these reads was mapped to generated metagenomic-assembled genomes and NCBI using BLAST. vanHBX could only be linked to the phylum level (Bacillota). Plasmid analysis of vanHBX Hi-C contigs showed that these were mainly located on plasmids reported found in enterococci species. Most vanHAX-linked reads could only be linked to phylum and class level, but some reads were assigned to Enterococcus faecium (7 reads), Enterococcus faecalis (4 reads), Paenibacillus apiarius (2 reads), and Paenibacillus thiaminolyticus (27 reads). Ten of the 20 Hi-C contigs-containing vanHAX were annotated as plasmid, all reported found in Enterococcus species. This study shows that while Hi-C technology is valuable for linking antimicrobial resistance genes to bacterial taxa, it suffers from challenges in reliably mapping the linked read to a genomic region with sufficient taxonomic information. Our results also suggest that over the +20 years of colonizing a sewer system, vanHAX has not become widespread across multiple taxa, remaining primarily in E. faecalis and E. faecium, with the exception of Paenibacillus.IMPORTANCELong-term colonization of microbial communities with antimicrobial-resistant bacteria is expected to result in sharing of the resistance genes between several different bacterial taxa of the communities. We investigated microbiomes from a sewer, which have been colonized with glycopeptide-resistant bacteria harboring the mobile vanHAX gene cluster for a minimum of 20 years, using metagenomics sequencing and Hi-C. We found that despite the long-term presence in the sewer, the vanHAX genes have seemingly not disseminated widely.202539656004
5150110.9988Cultivation and Genomic Characterization of the Bile Bacterial Species From Cholecystitis Patients. The microbes in human bile are closely related to gallbladder health and other potential disorders. Although the bile microbial community has been investigated by recent studies using amplicon or metagenomic sequencing technologies, the genomic information of the microbial species resident in bile is rarely reported. Herein, we isolated 138 bacterial colonies from the fresh bile specimens of four cholecystitis patients using a culturome approach and genomically characterized 35 non-redundant strains using whole-genome shotgun sequencing. The bile bacterial isolates spanned 3 classes, 6 orders, 10 families, and 14 genera, of which the members of Enterococcus, Escherichia-Shigella, Lysinibacillus, and Enterobacter frequently appeared. Genomic analysis identified three species, including Providencia sp. D135, Psychrobacter sp. D093, and Vibrio sp. D074, which are not represented in existing reference genome databases. Based on the genome data, the functional capacity between bile and gut isolates was compared. The bile strains encoded 5,488 KEGG orthologs, of which 4.9% were specific to the gut strains, including the enzymes involved in biofilm formation, two-component systems, and quorum-sensing pathways. A total of 472 antibiotic resistance genes (ARGs) were identified from the bile genomes including multidrug resistance proteins (42.6%), fluoroquinolone resistance proteins (12.3%), aminoglycoside resistance proteins (9.1%), and β-lactamase (7.2%). Moreover, in vitro experiments showed that some bile bacteria have the capabilities for bile salt deconjugation or biotransformation (of primary bile acids into secondary bile acids). Although the physiological or pathological significance of these bacteria needs further exploration, our works expanded knowledge about the genome, diversity, and function of human bile bacteria.202134790179
5470120.9988Antimicrobial resistance genes, virulence markers and prophage sequences in Salmonella enterica serovar Enteritidis isolated in Tunisia using whole genome sequencing. Salmonella Enteritidis causes a major public health problem in the world. Whole genome sequencing can give us a lot of information not only about the phylogenetic relatedness of these bacteria but also in antimicrobial resistance and virulence gene predictions. In this study, we analyzed the whole genome data of 45 S. Enteritidis isolates recovered in Tunisia from different origins, human, animal, and foodborne samples. Two major lineages (A and B) were detected based on 802 SNPs differences. Among these SNPs, 493 missense SNPs were identified. A total of 349 orthologue genes mutated by one or two missense SNPs were classified in 22 functional groups with the prevalence of carbohydrate transport and metabolism group. A good correlation between genotypic antibiotic resistance profiles and phenotypic analysis were observed. Only resistant isolates carried the respective molecular resistant determinants. The investigation of virulence markers showed the distribution of 11 Salmonella pathogenicity islands (SPI) out of 23 previously described. The SPI-1 and SPI-2 genes encoding type III secretion systems were highly conserved in all isolates except one. In addition, the virulence plasmid genes were present in all isolates except two. We showed the presence of two fimbrial operons sef and ste previously considered to be specific for typhoidal Salmonella. Our collection of S. Enteritidis reveal a diversity among prophage profiles. SNPs analysis showed that missense mutations identified in fimbriae and in SPI-1 and SPI-2 genes were mostly detected in lineage B. In conclusion, WGS is a powerful application to study functional genomic determinants of S. Enteritidis such as antimicrobial resistance genes, virulence markers and prophage sequences. Further studies are needed to predict the impact of the missenses SNPs that can affect the protein functions associated with pathogenicity.202235909609
1795130.9988Accessory genome of the multi-drug resistant ocular isolate of Pseudomonas aeruginosa PA34. Bacteria can acquire an accessory genome through the horizontal transfer of genetic elements from non-parental lineages. This leads to rapid genetic evolution allowing traits such as antibiotic resistance and virulence to spread through bacterial communities. The study of complete genomes of bacterial strains helps to understand the genomic traits associated with virulence and antibiotic resistance. We aimed to investigate the complete accessory genome of an ocular isolate of Pseudomonas aeruginosa strain PA34. We obtained the complete genome of PA34 utilising genome sequence reads from Illumina and Oxford Nanopore Technology followed by PCR to close any identified gaps. In-depth genomic analysis was performed using various bioinformatics tools. The susceptibility to heavy metals and cytotoxicity was determined to confirm expression of certain traits. The complete genome of PA34 includes a chromosome of 6.8 Mbp and two plasmids of 95.4 Kbp (pMKPA34-1) and 26.8 Kbp (pMKPA34-2). PA34 had a large accessory genome of 1,213 genes and had 543 unique genes not present in other strains. These exclusive genes encoded features related to metal and antibiotic resistance, phage integrase and transposons. At least 24 genomic islands (GIs) were predicated in the complete chromosome, of which two were integrated into novel sites. Eleven GIs carried virulence factors or replaced pathogenic genes. A bacteriophage carried the aminoglycoside resistance gene (AAC(3)-IId). The two plasmids carried other six antibiotic resistance genes. The large accessory genome of this ocular isolate plays a large role in shaping its virulence and antibiotic resistance.201930986237
4663140.9988Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Ochrobactrum genus is comprised of soil-dwelling Gram-negative bacteria mainly reported for bioremediation of toxic compounds. Since last few years, mainly two species of this genus, O. intermedium and O. anthropi were documented for causing infections mostly in the immunocompromised patients. Despite such ubiquitous presence, study of adaptation in various niches is still lacking. Thus, to gain insights into the niche adaptation strategies, pan-genome analysis was carried out by comparing 67 genome sequences belonging to Ochrobactrum species. Pan-genome analysis revealed it is an open pan-genome indicative of the continuously evolving nature of the genus. The presence/absence of gene clusters also illustrated the unique presence of antibiotic efflux transporter genes and type IV secretion system genes in the clinical strains while the genes of solvent resistance and exporter pumps in the environmental strains. A phylogenomic investigation based on 75 core genes depicted better and robust phylogenetic resolution and topology than the 16S rRNA gene. To support the pan-genome analysis, individual genomes were also investigated for the mobile genetic elements (MGE), antibiotic resistance genes (ARG), metal resistance genes (MRG) and virulence factors (VF). The analysis revealed the presence of MGE, ARG, and MRG in all the strains which play an important role in the species evolution which is in agreement with the pan-genome analysis. The average nucleotide identity (ANI) based on the genetic relatedness between the Ochrobactrum species indicated a distinction between individual species. Interestingly, the ANI tool was able to classify the Ochrobactrum genomes to the species level which were assigned till the genus level on the NCBI database.202032428556
1789150.9988Genomic and phylogenetic analysis of a multidrug-resistant Burkholderia contaminans strain isolated from a patient with ocular infection. OBJECTIVES: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail. METHODS: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools. RESULTS: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified. CONCLUSION: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus.202133965629
469160.9988Ancient permafrost staphylococci carry antibiotic resistance genes. Background: Permafrost preserves a variety of viable ancient microorganisms. Some of them can be cultivated after being kept at subzero temperatures for thousands or even millions of years. Objective: To cultivate bacterial strains from permafrost. Design: We isolated and cultivated two bacterial strains from permafrost that was obtained at Mammoth Mountain in Siberia and attributed to the Middle Miocene. Bacterial genomic DNA was sequenced with 40-60× coverage and high-quality contigs were assembled. The first strain was assigned to Staphylococcus warneri species (designated MMP1) and the second one to Staphylococcus hominis species (designated MMP2), based on the classification of 16S ribosomal RNA genes and genomic sequences. Results: Genomic sequence analysis revealed the close relation of the isolated ancient bacteria to the modern bacteria of this species. Moreover, several genes associated with resistance to different groups of antibiotics were found in the S. hominis MMP2 genome. Conclusions: These findings supports a hypothesis that antibiotic resistance has an ancient origin. The enrichment of cultivated bacterial communities with ancient permafrost strains is essential for the analysis of bacterial evolution and antibiotic resistance.201728959177
8465170.9987Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.202235663880
5191180.9987Draft genome sequences data of Mammaliicoccus lentus isolated from horse farm soil. Mammallicoccus lentus is a member of the commensal microflora of the Staphylococcaceae family, which colonizes the skin of several species of farm animals, including poultry and dairy animals (Huber et al., 2011; Zhang et al., 2009). The study of the members of the Staphylococcaceae family, such as the Mammaliicoccus genus, isolated from various sources is of great importance for agriculture and public health as contributes to the accumulation of knowledge and understanding of the mechanisms of antibiotic resistance gene transmission among bacterial pathogens. This thesis is supported by recent studies showing that some members of the Mammallicoccus genus serve as a reservoir of virulence and antibiotic resistance genes and may also be a source of horizontal gene transfer (Saraiva et al., 2021). Here, we present a draft genome sequence of Mammallicoccus lentus strain PVZ.22 from a horse farm soil sample. The sequencing was performed on the Illumina MiSeq platform. The genome was assembled using the Geneious software package. The genome contains 2,802,282 bp with a total of 2805 genes, 8 perfect and 12 strict AMR genes and 58 tRNAs genes.202338075610
5471190.9987Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla (MOX-9) and bla (OXA-427) β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.202236532448