# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5177 | 0 | 1.0000 | Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Aim: Two lytic phages were isolated using P. aeruginosa DSM19880 as host and fully characterized. Materials & methods: Phages were characterized physicochemically, biologically and genomically. Results & conclusion: Host range analysis revealed that the phages also infect some multidrug-resistant (MDR) P. aeruginosa clinical isolates. Increasing MOI from 1 to 1000 significantly increased phage efficiency and retarded bacteria regrowth, but phage ph0034 (reduction of 7.5 log CFU/ml) was more effective than phage ph0031 (reduction of 5.1 log CFU/ml) after 24 h. Both phages belong to Myoviridae family. Genome sequencing of phages ph0031 and ph0034 showed that they do not carry toxin, virulence, antibiotic resistance and integrase genes. The results obtained are highly relevant in the actual context of bacterial resistance to antibiotics. | 2022 | 34989245 |
| 5840 | 1 | 0.9992 | Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h. | 2009 | 19656662 |
| 4648 | 2 | 0.9992 | Potential of phage cocktails in the inactivation of Enterobacter cloacae--An in vitro study in a buffer solution and in urine samples. The objective of this study was to compare the dynamics of three previously isolated phages for Enterobacter cloacae in order to evaluate their ability to treat urinary tract infections (UTI). The phages genomes, survival, host range, were characterized, and the host-phage dynamics was determined in culture medium and urine samples. The presence of prophages in bacteria, host recovery and development of resistance to phage after treatment was also evaluated. The growth of the E. cloacae was inhibited by the three phages, resulting in a decrease of ≈3 log. The use of cocktails with two or three phages was significantly more effective (decrease of ≈4 log). In urine, the inactivation was still effective (≈2 log). Both phages were considered safe to inactivate the bacteria (no integrase and toxin codifying genes). Some bacteria remained viable in the presence of the phages, but their colonies were smaller than those of the non-treated control and were visible only after 5 days of incubation (visible after 24h in the control). A high bacterial inactivation efficiency with phage cocktails combined with the safety of the phages and their long periods of survival, even in urine samples, paves the way for depth studies, especially in vivo studies, to control urinary tract infection and to overcome the development of resistances by the nosocomial bacterium E. cloacae. | 2016 | 26541317 |
| 5841 | 3 | 0.9992 | Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions. BACKGROUND: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. AIM: This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. METHODOLOGY: An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. RESULTS: Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions' induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. CONCLUSION: This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella. | 2024 | 39599826 |
| 5759 | 4 | 0.9992 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 4738 | 5 | 0.9992 | Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization. | 2025 | 38767682 |
| 3412 | 6 | 0.9992 | Bacterial Resistance to β-Lactam Antibiotics in Municipal Wastewater: Insights from a Full-Scale Treatment Plant in Poland. This study investigated enzymatic and genetic determinants of bacterial resistance to β-lactam antibiotics in the biocenosis involved in the process of biological treatment of wastewater by activated sludge. The frequency of bacteria resistant to selected antibiotics and the activity of enzymes responsible for resistance to β-lactam antibiotics were estimated. The phenomenon of selection and spread of a number of genes determining antibiotic resistance was traced using PCR and gene sequencing. An increase in the percentage of bacteria showing resistance to β-lactam antibiotics in the microflora of wastewater during the treatment process was found. The highest number of resistant microorganisms, including multi-resistant strains, was recorded in the aeration chamber. Significant amounts of these bacteria were also present in treated wastewater, where the percentage of penicillin-resistant bacteria exceeded 50%, while those resistant to the new generation β-lactam antibiotics meropenem and imipenem were found at 8.8% and 6.4%, respectively. Antibiotic resistance was repeatedly accompanied by the activity of enzymes such as carbapenemases, metallo-β-lactamases, cephalosporinases and β-lactamases with an extended substrate spectrum. The activity of carbapenemases was shown in up to 97% of the multi-resistant bacteria. Studies using molecular biology techniques showed a high frequency of genes determining resistance to β-lactam antibiotics, especially the blaTEM1 gene. The analysis of the nucleotide sequences of blaTEM1 gene variants present in bacteria at different stages of wastewater treatment showed 50-100% mutual similarity of. | 2022 | 36557576 |
| 5659 | 7 | 0.9992 | Pseudomonas aeruginosa clinical isolates in Egypt: phenotypic, genotypic, and antibiofilm assessment of Pluronic F-127. BACKGROUND: Virulence factors play an important role in developing bacterial resistance leading to the increased severity of Pseudomonas aeruginosa infections. Several genes encoding for virulence factors is coordinated by the quorum sensing (QS) system. In the present study, the prevalence of virulence genes, particularly those involved in controlling biofilm formation, and their correlation with antibiotic resistance patterns was investigated. The ability of the pathogens to form biofilm and the impact of Pluronic F-127 as a potential biofilm inhibitor was assessed. RESULTS: A total of 118 P. aeruginosa clinical isolates were collected. The highest resistance rates were observed against ceftazidime (94%), while colistin was the most effective followed by polymyxin B with sensitivity rate 72% and 59%, respectively. Out of 118 isolates: 111 (94%) were biofilm producers, 24.6% of them were strong. The QS genes; lasR and rhlR, were detected in 85% and 89% of the isolates, respectively, toxA gene in 95% and ampC gene in 69% of the isolates. Pluronic F-127 was confirmed as a biofilm inhibitor in lowest concentration used 1.25 mg/ml which inhibits 78% of strong biofilm forming isolates and has better effect on detachment of established biofilm by 90% of biofilm forming isolates. CONCLUSION: The ability of bacteria to form biofilms contributes greatly to the development of antibiotic resistance, which leads to the occurrence of persistent and chronic bacterial illnesses. Many isolates exhibited moderate to strong biofilm forming ability, which showed a high resistance pattern. The results demonstrated that Pluronic F-127 has a promising level of biofilm inhibition and detachment in most isolates. It has a chance to serve as a substitute means for combating biofilm formation. | 2025 | 40281406 |
| 2790 | 8 | 0.9992 | The characteristics of genetically related Pseudomonas aeruginosa from diverse sources and their interaction with human cell lines. We investigated a collection of Pseudomonas aeruginosa strains from hospitalised patients (n = 20) and various environmental sources (n = 214) for their genetic relatedness; virulence properties; antibiotic resistance; and interaction with intestinal (Caco-2), renal (A-498), and lung (Calu-3) cell lines. Using RAPD-PCR, we found high diversity among the strains irrespective of their sources, with only 6 common (C) types containing strains from both a clinical and environmental source. Environmental strains belonging to these C-types showed greater adhesion to A-498 cells than did clinical strains (17 ± 13 bacteria/cell versus 13 ± 11 bacteria/cell; p < 0.001), whereas clinical strains showed significantly greater adhesion to Calu-3 and Caco-2 cells than did environmental strains (p < 0.001 for both). The virulence genes and antibiotic resistance profiles of the strains were similar; however, the prevalence of environmental strains carrying both exoS and exoU was significantly (p < 0.0368) higher than clinical strains. While all strains were resistant to ticarcillin and ticarcillin-clavulanic acid, resistance against aztreonam, gentamicin, amikacin, piperacillin, and ceftazidime varied among environmental and clinical strains. These results suggest that environmental strains of P. aeruginosa carry virulence properties similar to clinical strains, including adhesion to various human cell lines, with some strains showing a higher adhesion to specific cell lines, indicating they may have a better ability to cause infection in those sites under predisposing conditions of the host. | 2016 | 26854365 |
| 7785 | 9 | 0.9992 | Fate of Extracellular DNA in the Production of Fertilizers from Source-Separated Urine. The practice of urine source-separation for fertilizer production necessitates an understanding of the presence and impact of extracellular DNA in the urine. This study examines the fate of plasmid DNA carrying ampicillin and tetracycline resistance genes in aged urine, including its ability to be taken up and expressed by competent bacteria. Plasmid DNA incubated in aged urine resulted in a >2 log loss of bacterial transformation efficiency in Acinetobacter baylyi within 24 h. The concentration of ampicillin and tetracycline resistance genes, as measured with quantitative polymerase chain reaction, did not correspond with the observed transformation loss. When the plasmid DNA was incubated in aged urine that had been filtered (0.22 μm) or heated (75 °C), the transformation efficiencies were more stable than when the plasmids were incubated in unfiltered and unheated aged urine. Gel electrophoresis results indicated that plasmid linearization by materials larger than 100 kDa in the aged urine caused the observed transformation efficiency decreases. The results of this study suggest that extracellular DNA released into aged urine poses a low potential for the spread of antibiotic resistance genes to bacteria once it is released to the environment. | 2020 | 31965791 |
| 5091 | 10 | 0.9991 | Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. OBJECTIVES: Integrons are bacterial genetic elements that can capture and express genes contained in mobile cassettes. Integrons have been described worldwide in Gram-negative bacteria and are a marker of antibiotic resistance. We developed a specific and sensitive Taqman probe-based real-time PCR method with three different primer-probe pairs for simultaneous detection of the three main classes of integron. METHODS: Sensitivity was assessed by testing mixtures of the three targets (intI integrase genes of each integron class) ranging from 10 to 10(8) copies. Specificity was determined with a panel of integron-containing and integron-free control strains. The method was then applied to clinical samples. RESULTS: The PCR method was specific and had a sensitivity of 10(2) copies for all three genes, regardless of their respective quantities. The method was quantitative from 10(3) to 10(7) copies, and was able to detect integrons directly in biological samples. CONCLUSIONS: We have developed a rapid, quantitative, specific and sensitive method that could prove useful for initial screening of Gram-negative isolates, or clinical samples, for likely multidrug resistance. | 2010 | 20542899 |
| 4645 | 11 | 0.9991 | Unravelling the consequences of the bacteriophages in human samples. Bacteriophages are abundant in human biomes and therefore in human clinical samples. Although this is usually not considered, they might interfere with the recovery of bacterial pathogens at two levels: 1) by propagating in the enrichment cultures used to isolate the infectious agent, causing the lysis of the bacterial host and 2) by the detection of bacterial genes inside the phage capsids that mislead the presence of the bacterial pathogen. To unravel these interferences, human samples (n = 271) were analyzed and infectious phages were observed in 11% of blood culture, 28% of serum, 45% of ascitic fluid, 14% of cerebrospinal fluid and 23% of urine samples. The genetic content of phage particles from a pool of urine and ascitic fluid samples corresponded to bacteriophages infecting different bacterial genera. In addition, many bacterial genes packaged in the phage capsids, including antibiotic resistance genes and 16S rRNA genes, were detected in the viromes. Phage interference can be minimized applying a simple procedure that reduced the content of phages up to 3 logs while maintaining the bacterial load. This method reduced the detection of phage genes avoiding the interference with molecular detection of bacteria and reduced the phage propagation in the cultures, enhancing the recovery of bacteria up to 6 logs. | 2020 | 32317653 |
| 5973 | 12 | 0.9991 | DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria. | 2006 | 16427254 |
| 5672 | 13 | 0.9991 | Antibiotic Resistance, Biofilm Formation, and Presence of Genes Encoding Virulence Factors in Strains Isolated from the Pharmaceutical Production Environment. The spread of bacterial resistance to antibiotics affects various areas of life. The aim of this study was to assess the occurrence of Pseudomonas aeruginosa, and other bacteria mainly from orders Enterobacterales and Staphylococcus in the pharmaceutical production sites, and to characterize isolated strains in the aspects of antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors. Genes encoding selected virulence factors were detected using PCR techniques. Antimicrobial susceptibility testing was applied in accordance with the EUCAST recommendations. A total of 46 P. aeruginosa strains were isolated and 85% strains showed a strong biofilm-forming ability. The qualitative identification of genes taking part in Quorum Sensing system demonstrated that over 89% of strains contained lasR and rhlI genes. An antimicrobial susceptibility testing revealed nine strains resistant to at least one antibiotic, and two isolates were the metallo-β-lactamase producers. Moreover, the majority of P. aeruginosa strains contained genes encoding various virulence factors. Presence of even low level of pathogenic microorganisms or higher level of opportunistic pathogens and their toxic metabolites might result in the production inefficiency. Therefore, the prevention of microbial contamination, effectiveness of sanitary and hygienic applied protocols, and constant microbiological monitoring of the environment are of great importance. | 2021 | 33513933 |
| 5638 | 14 | 0.9991 | PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. BACKGROUND: The selection of antibiotic resistance genes during antibiotic therapy is a critical problem complicated by the transmission of resistance genes to previously sensitive strains via conjugative plasmids and transposons and by the transfer of resistance genes between gram-positive and gram-negative bacteria. The purpose of this investigation was to monitor the presence of selected tetracycline resistance genes in subgingival plaque during site specific tetracycline fiber therapy in 10 patients with adult periodontitis. METHOD: The polymerase chain reaction (PCR) was used in separate tests for the presence of 3 tetracycline resistance genes (tetM, tetO and tetQ) in DNA purified from subgingival plaque samples. Samples were collected at baseline, i.e., immediately prior to treatment, and at 2 weeks, and 1, 3, and 6 months post-fiber placement. The baseline and 6-month samples were also subjected to DNA hybridization tests for the presence of 8 putative periodontal pathogenic bacteria. RESULTS: PCR analysis for the tetM resistance gene showed little or no change in 5 patients and a decrease in detectability in the remaining 5 patients over the 6 months following tetracycline fiber placement. The results for tetO and tetQ were variable showing either no change in detectability from baseline through the 6-month sampling interval or a slight increase in detectability over time in 4 of the 10 patients. DNA hybridization analysis showed reductions to unmeasurable levels of the putative periodontal pathogenic bacteria in all but 2 of the 10 patients. CONCLUSIONS: These results complement earlier studies of tet resistance and demonstrate the efficacy of PCR monitoring for the appearance of specific resistance genes during and after antibiotic therapy. | 2000 | 10883874 |
| 5661 | 15 | 0.9991 | Detection of β-Lactamase Resistance and Biofilm Genes in Pseudomonas Species Isolated from Chickens. Bacteria of the genus Pseudomonas are pathogens in both humans and animals. The most prevalent nosocomial pathogen is P. aeruginosa, particularly strains with elevated antibiotic resistance. In this study, a total of eighteen previously identified Pseudomonas species strains, were isolated from chicken. These strains were screened for biofilm formation and antibiotic resistance. In addition, we evaluated clove oil’s effectiveness against Pseudomonas isolates as an antibiofilm agent. The results showed that Pseudomonas species isolates were resistant to most antibiotics tested, particularly those from the β-lactamase family. A significant correlation (p < 0.05) between the development of multidrug-resistant isolates and biofilms is too informal. After amplifying the AmpC-plasmid-mediated genes (blaCMY, blaMIR, DHA, and FOX) and biofilm-related genes (psld, rhlA, and pelA) in most of our isolates, PCR confirmed this relationship. Clove oil has a potent antibiofilm effect against Pseudomonas isolates, and may provide a treatment for bacteria that form biofilms and are resistant to antimicrobials. | 2022 | 36296251 |
| 5757 | 16 | 0.9991 | The expression regulation of recA gene and bacterial class 2 integron-associated genes induced by antibiotics. OBJECTIVE: To investigate the effects and mechanisms of common antibiotics induction on the expression of class 2 integron integrase and variable region resistance genes in bacteria, as well as potential structural mutations. METHODS: Clinical isolates containing non-functional class 2 integrons and functional class 2 integrons were selected. Strains containing non-functional class 2 integrons or functional class 2 integrons were constructed using isolated DNA templates. These strains were subjected to continuous induction with drug concentrations of 1/2 MIC and 1/4 MIC (ciprofloxacin, ampicillin, and kanamycin) and a concentration of 0.2 μg/ml (mitomycin C) over 8 days. The relative expression levels of relevant genes were measured on days 1, 3, and 8. Drug resistance in the experimental strains was assessed before and after induction to identify any differences. Finally, the sequence of the non-functional class 2 integron integrase gene was analyzed for structural changes that occurred as a result of induction. RESULTS: All drugs selected in this study increased the relative expression levels of recA, intI2, dfrA1, sat2, and aadA1. Significant differences in inductive abilities were observed among the drugs. The 1/2 MIC concentrations were more effective than 1/4 MIC concentrations in increasing the relative expression levels of target genes and enhancing the resistance of the experimental strains. The relative expression levels of recA, intI2, and dfrA1 rose on day 1, peaked on day 3, and slightly declined by day 8. Induced strains exhibited increased resistance to the drugs, with the most significant changes observed in the clinical isolates, particularly concerning CIP resistance. Notably, clinical isolate 7b induced with 1/2 MIC KAN exhibited the loss of one base at position 12bp in the integrase sequence. However, none of the four drugs induced mutations at the 444 bp position of class 2 integrons. CONCLUSION: Sub-MIC concentrations of drugs have been shown to induce an increase in the relative expression level of the SOS response-related gene recA, as well as the integrase and resistance genes of class 2 integrons. Continuous induction leads to sustained upregulation of these genes, which stabilizes or slightly decreases upon reaching a plateau. However, the capacity of different drugs to induce expression varies significantly. Short-term antibiotic exposure did not result in critical mutations that convert class 2 integrons into functional forms. | 2025 | 40950603 |
| 3358 | 17 | 0.9991 | Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments. | 2021 | 33515651 |
| 3357 | 18 | 0.9991 | Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant. | 2009 | 19389756 |
| 4916 | 19 | 0.9991 | A clinical metagenomic study of biopsies from Mexican endophthalmitis patients reveals the presence of complex bacterial communities and a diversity of resistance genes. Infectious endophthalmitis is a severe ophthalmic emergency. This infection can be caused by bacteria and fungi. For efficient treatment, the administration of antimicrobial drugs to which the microbes are susceptible is essential. The aim of this study was to identify micro-organisms in biopsies of Mexican endophthalmitis patients using metagenomic next-generation sequencing and determine which antibiotic resistance genes were present in the biopsy samples. In this prospective case study, 19 endophthalmitis patients were recruited. Samples of vitreous or aqueous humour were extracted for DNA extraction for metagenomic next-generation sequencing. Analysis of the sequencing results revealed the presence of a wide variety of bacteria in the biopsies. Resistome analysis showed that homologues of antibiotic resistance genes were present in several biopsy samples. Genes possibly conferring resistance to ceftazidime and vancomycin were detected in addition to various genes encoding efflux pumps. Our findings contrast with the widespread opinion that only one or a few bacterial strains are present in the infected tissues of endophthalmitis patients. These diverse communities might host many of the resistance genes that were detected, which can further complicate the infections. | 2024 | 39045243 |