# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5140 | 0 | 1.0000 | -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment. | 2017 | 28229018 |
| 160 | 1 | 0.9994 | A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria. | 2024 | 38817968 |
| 477 | 2 | 0.9994 | Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. | 2007 | 17675438 |
| 8387 | 3 | 0.9994 | Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. | 2017 | 28189581 |
| 6106 | 4 | 0.9993 | Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance. | 2014 | 24632831 |
| 4360 | 5 | 0.9993 | Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes. | 2023 | 37761923 |
| 8383 | 6 | 0.9993 | Novel insights into carbohydrate utilisation, antimicrobial resistance, and sporulation potential in Roseburia intestinalis isolates across diverse geographical locations. Roseburia intestinalis is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of R. intestinalis within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits. | 2025 | 40089923 |
| 478 | 7 | 0.9993 | Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers. | 2018 | 29967598 |
| 472 | 8 | 0.9993 | MiniReview: bioinformatic study of bile responses in Campylobacterales. Campylobacter, Helicobacter and Wolinella are genera of the order Campylobacterales, belonging to the class Epsilonproteobacteria. Their habitats are various niches in the gastrointestinal tract of higher animals, where they may come into contact with bile. Microorganisms in these environments require mechanisms of resistance to the surface-active amphipathic molecules with potent antimicrobial activities present in bile. This review summarizes current knowledge on the molecular responses to bile by Campylobacterales and other bacterial species that inhabit the intestinal tract and belong to the phyla Proteobacteria, Bacteriodetes, Firmicutes and Actinobacteria. To date, 125 specific genes have been implicated in bile responses, of which 10 are found in Campylobacterales. Genome database searches, analyses of protein sequence and domain similarities, and gene ontology data integration were performed to compare the responses to bile of these bacteria. The results showed that 33 proteins of bacteria belonging to the four phyla had similarities equal to or greater than 50-46% proteins of Campylobacterales. Domain architecture analyses revealed that 151 Campylobacterales proteins had similar domain composition and organization to 60 proteins known to participate in the tolerance to bile in other bacteria. The proteins CmeB, CmeF and CbrR of Campylobacter jejuni involved in bile tolerance were homologous to 42 proteins identified in the Proteobacteria, Bacteriodetes and Firmicutes. On the other hand, the proteins CiaB, CmeA, CmeC, CmeD, CmeE and FlaAsigma(28) also involved in the response to bile of C. jejuni, did not have homologues in other bacteria. Among the bacteria inhabiting the gastrointestinal tract, the Campylobacterales seem to have evolved some mechanisms of bile resistance similar to those of other bacteria, as well as other mechanisms that appear to be characteristic of this order. | 2007 | 17266717 |
| 8391 | 9 | 0.9993 | The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbU(G77S) and PBPB3(V240F) amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains. | 2020 | 33123101 |
| 174 | 10 | 0.9993 | Resistance to Arsenite and Arsenate in Saccharomyces cerevisiae Arises through the Subtelomeric Expansion of a Cluster of Yeast Genes. Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated. | 2022 | 35805774 |
| 3709 | 11 | 0.9993 | Potential of tellurite resistance in heterotrophic bacteria from mining environments. Untreated mining wastes and improper disposal of high-tech devices generate an environmental increase of bioavailable metalloids, exerting stress on autochthonous microbial populations. Tellurium is a metalloid, an element with raising economic importance; nevertheless, its interaction with living organisms is not yet fully understood. Here we characterized aerobic heterotrophic bacteria, isolated from high metal-content mining residues, able to resist/reduce tellurite into tellurium structures and to determine the presence of confirmed tellurite resistance genetic determinants in resistant strains. We identified over 50 tellurite-resistant strains, among 144 isolates, eight strains reduced tellurite to tellurium at different rates, with the concomitant production of tellurium deposits. Most tellurite resistance genes were found in strains from Bacillales, with the prevalence of genes of the ter operon. This work demonstrated that bacterial isolates, from environments with a persistent selective pressure, are potential candidates for uncovering strategies for tellurite resistance and/or production of valuable Te-containing materials. | 2022 | 35784792 |
| 8711 | 12 | 0.9993 | Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. In soil ecosystems, microorganisms produce diverse secondary metabolites such as antibiotics, antifungals and siderophores that mediate communication, competition and interactions with other organisms and the environment(1,2). Most known antibiotics are derived from a few culturable microbial taxa (3) , and the biosynthetic potential of the vast majority of bacteria in soil has rarely been investigated (4) . Here we reconstruct hundreds of near-complete genomes from grassland soil metagenomes and identify microorganisms from previously understudied phyla that encode diverse polyketide and nonribosomal peptide biosynthetic gene clusters that are divergent from well-studied clusters. These biosynthetic loci are encoded by newly identified members of the Acidobacteria, Verrucomicobia and Gemmatimonadetes, and the candidate phylum Rokubacteria. Bacteria from these groups are highly abundant in soils(5-7), but have not previously been genomically linked to secondary metabolite production with confidence. In particular, large numbers of biosynthetic genes were characterized in newly identified members of the Acidobacteria, which is the most abundant bacterial phylum across soil biomes (5) . We identify two acidobacterial genomes from divergent lineages, each of which encodes an unusually large repertoire of biosynthetic genes with up to fifteen large polyketide and nonribosomal peptide biosynthetic loci per genome. To track gene expression of genes encoding polyketide synthases and nonribosomal peptide synthetases in the soil ecosystem that we studied, we sampled 120 time points in a microcosm manipulation experiment and, using metatranscriptomics, found that gene clusters were differentially co-expressed in response to environmental perturbations. Transcriptional co-expression networks for specific organisms associated biosynthetic genes with two-component systems, transcriptional activation, putative antimicrobial resistance and iron regulation, linking metabolite biosynthesis to processes of environmental sensing and ecological competition. We conclude that the biosynthetic potential of abundant and phylogenetically diverse soil microorganisms has previously been underestimated. These organisms may represent a source of natural products that can address needs for new antibiotics and other pharmaceutical compounds. | 2018 | 29899444 |
| 5141 | 13 | 0.9993 | Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023(T) and P7388(T) were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed. | 2021 | 34745033 |
| 6108 | 14 | 0.9993 | Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BACKGROUND: Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III) and As(V)] and can be transformed by microbial redox processes in the natural environment. As(III) is much more toxic and mobile than As(V), hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III) resistance levels and related functional genes of these species. RESULTS: A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM) were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1) and 21 ACR3(2)] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB) and an arsenite transporter gene (ACR3 or arsB) displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2) and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. CONCLUSION: Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in part by horizontal gene transfer events. Bacteria capable of both arsenite oxidation and arsenite efflux mechanisms had an elevated arsenite resistance level. | 2009 | 19128515 |
| 484 | 15 | 0.9992 | Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. We have isolated 25 new strains of streptomycetes from soil samples of a polluted site at the former uranium mine, Wismut, in eastern Thuringia, Germany. The strains grew on medium containing 1 mM NiCl2 and thus were resistant to the heavy metal ion. Seven of the strains were further characterized. All of these strains were resistant to heavy metals in various degrees with up to 10 mM resistance against NiCl2 supplied with the liquid minimal growth medium. The high level of resistance prompted us to look for high affinity nickel transporter genes thought to provide a means to eliminate the excess nickel ions form the cells. Degenerate oligonucleotide primers derived from sequences of P-type ATPase transporter genes of Gram negative bacteria identified a fragment which shows deduced amino acid sequence similarities to known high affinity nickel transporters. Investigation of two genes obtained from the isolates Streptomyces spec. E8 and F4 showed high sequence divergence. This was unexpected since a transmissible plasmid had been thought to convey heavy metal resistance. | 2000 | 11199488 |
| 8384 | 16 | 0.9992 | In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut. | 2014 | 25408687 |
| 172 | 17 | 0.9992 | Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes. Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs. | 2015 | 26156561 |
| 4368 | 18 | 0.9992 | Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BACKGROUND: The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. RESULTS: Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the gamma-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (gamma-Proteobacteria) possess similar plasmid-encoded arsC sequences. CONCLUSION: The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT) in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms. | 2003 | 12877744 |
| 8677 | 19 | 0.9992 | Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Elevated concentration of non-essential persistent heavy metals and metalloids in the soil is detrimental to essential soil microbes and plants, resulting in diminished diversity and biomass. Thus, isolation, screening, and whole genomic analysis of potent strains of bacteria from arable lands with inherent capabilities of heavy metal resistance and plant growth promotion hold the key for bio remedial applications. This study is an attempt to do the same. In this study, a potent strain of Pseudomonas aeruginosa was isolated from paddy fields, followed by metabolic profiling using FTIR, metal uptake analysis employing ICP-MS, whole genome sequencing and comparative codon usage analysis. ICP-MS study provided insights into a high degree of Cd uptake during the exponential phase of growth under cumulative metal stress to Cd, Zn and Co, which was further corroborated by the detection of cadA gene along with czcCBA operon in the genome upon performing whole-genome sequencing. This potent strain of Pseudomonas aeruginosa also harboured genes, such as copA, chrA, znuA, mgtE, corA, and others conferring resistance against different heavy metals, such as Cd, Zn, Co, Cu, Cr, etc. A comparative codon usage bias analysis at the genomic and genic level, whereby several heavy metal resistant genes were considered in the backdrop of two housekeeping genes among 40 Pseudomonas spp. indicated the presence of a relatively strong codon usage bias in the studied strain. With this work, an effort was made to explore heavy metal-resistant bacteria (isolated from arable soil) and whole genome sequence analysis to get insight into metal resistance for future bio remedial applications. | 2022 | 35763098 |