Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
513801.0000Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.201526074880
47810.9994Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers.201829967598
437320.9992Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.201425426110
437230.9992Plasmidome of Listeria spp.-The repA-Family Business. Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.202134638661
513740.9992Genomic Islands Confer Heavy Metal Resistance in Mucilaginibacter kameinonensis and Mucilaginibacter rubeus Isolated from a Gold/Copper Mine. Heavy metals (HMs) are compounds that can be hazardous and impair growth of living organisms. Bacteria have evolved the capability not only to cope with heavy metals but also to detoxify polluted environments. Three heavy metal-resistant strains of Mucilaginibacer rubeus and one of Mucilaginibacter kameinonensis were isolated from the gold/copper Zijin mining site, Longyan, Fujian, China. These strains were shown to exhibit high resistance to heavy metals with minimal inhibitory concentration reaching up to 3.5 mM Cu((II)), 21 mM Zn((II)), 1.2 mM Cd((II)), and 10.0 mM As((III)). Genomes of the four strains were sequenced by Illumina. Sequence analyses revealed the presence of a high abundance of heavy metal resistance (HMR) determinants. One of the strain, M. rubeus P2, carried genes encoding 6 putative P(IB-1)-ATPase, 5 putative P(IB-3)-ATPase, 4 putative Zn((II))/Cd((II)) P(IB-4) type ATPase, and 16 putative resistance-nodulation-division (RND)-type metal transporter systems. Moreover, the four genomes contained a high abundance of genes coding for putative metal binding chaperones. Analysis of the close vicinity of these HMR determinants uncovered the presence of clusters of genes potentially associated with mobile genetic elements. These loci included genes coding for tyrosine recombinases (integrases) and subunits of mating pore (type 4 secretion system), respectively allowing integration/excision and conjugative transfer of numerous genomic islands. Further in silico analyses revealed that their genetic organization and gene products resemble the Bacteroides integrative and conjugative element CTnDOT. These results highlight the pivotal role of genomic islands in the acquisition and dissemination of adaptive traits, allowing for rapid adaption of bacteria and colonization of hostile environments.201830477188
47750.9991Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment.200717675438
16060.9991A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.202438817968
436070.9991Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.202337761923
867780.9991Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Elevated concentration of non-essential persistent heavy metals and metalloids in the soil is detrimental to essential soil microbes and plants, resulting in diminished diversity and biomass. Thus, isolation, screening, and whole genomic analysis of potent strains of bacteria from arable lands with inherent capabilities of heavy metal resistance and plant growth promotion hold the key for bio remedial applications. This study is an attempt to do the same. In this study, a potent strain of Pseudomonas aeruginosa was isolated from paddy fields, followed by metabolic profiling using FTIR, metal uptake analysis employing ICP-MS, whole genome sequencing and comparative codon usage analysis. ICP-MS study provided insights into a high degree of Cd uptake during the exponential phase of growth under cumulative metal stress to Cd, Zn and Co, which was further corroborated by the detection of cadA gene along with czcCBA operon in the genome upon performing whole-genome sequencing. This potent strain of Pseudomonas aeruginosa also harboured genes, such as copA, chrA, znuA, mgtE, corA, and others conferring resistance against different heavy metals, such as Cd, Zn, Co, Cu, Cr, etc. A comparative codon usage bias analysis at the genomic and genic level, whereby several heavy metal resistant genes were considered in the backdrop of two housekeeping genes among 40 Pseudomonas spp. indicated the presence of a relatively strong codon usage bias in the studied strain. With this work, an effort was made to explore heavy metal-resistant bacteria (isolated from arable soil) and whole genome sequence analysis to get insight into metal resistance for future bio remedial applications.202235763098
17390.9991Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans. The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic resequencing of strains CH34, AE104, Δe4, and others revealed that the genomic islands CMGI2, 3, 4, D, and E, but no other islands or recessive determinants, were deleted in some of these strains. Provided that wild-type CH34 was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as surmised previously, silenced in the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. An analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and upregulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and at the same time ensures metal homeostasis. IMPORTANCE In their natural environment, bacteria continually acquire genes by horizontal gene transfer, and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes but instead may lose them. This phenomenon was indeed observed in Cupriavidus metallidurans for the loss key metal resistance determinants when no selection pressure was kept continuously. However, some recessive metal resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may remain in the genome only because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.202234910578
4514100.9991Phenotypic and resistome analysis of antibiotic and heavy metal resistance in the Antarctic bacterium Pseudomonas sp. AU10. Resistance to antibiotics and heavy metals in Antarctic bacteria has been investigated due to anthropogenic impact on the continent. However, there is still much to learn about the genetic determinants of resistance in native bacteria. In this study, we investigated antibiotic, heavy metal, and metalloid resistance in Pseudomonas sp. AU10, isolated from King George Island (Antarctica), and analyzed its genome to look for all the associated genetic determinants (resistome). We found that AU10 displayed resistance to Cr(VI), Cu(II), Mn(II), Fe(II), and As(V), and produced an exopolysaccharide with high Cr(VI)-biosorption capacity. Additionaly, the strain showed resistance to aminopenicillins, cefotaxime, aztreonam, azithromycin, and intermediate resistance to chloramphenicol. Regarding the resistome, we did not find resistance genes in AU10's natural plasmid or in a prophage context. Only a copper resistance cluster indicated possible horizontal acquisition. The mechanisms of resistance found were mostly efflux systems, several sequestering proteins, and a few enzymes, such as an AmpC β-lactamase or a chromate reductase, which would account for the observed phenotypic profile. In contrast, the presence of a few gene clusters, including the terZABCDE operon for tellurite resistance, did not correlate with the expected phenotype. Despite the observed resistance to multiple antibiotics and heavy metals, the lack of resistance genes within evident mobile genetic elements is suggestive of the preserved nature of AU10's Antarctic habitat. As Pseudomonas species are good bioindicators of human impact in Antarctic environments, we consider that our results could help refine surveillance studies based on monitoring resistances and associated resistomes in these populations.202337783937
3709110.9990Potential of tellurite resistance in heterotrophic bacteria from mining environments. Untreated mining wastes and improper disposal of high-tech devices generate an environmental increase of bioavailable metalloids, exerting stress on autochthonous microbial populations. Tellurium is a metalloid, an element with raising economic importance; nevertheless, its interaction with living organisms is not yet fully understood. Here we characterized aerobic heterotrophic bacteria, isolated from high metal-content mining residues, able to resist/reduce tellurite into tellurium structures and to determine the presence of confirmed tellurite resistance genetic determinants in resistant strains. We identified over 50 tellurite-resistant strains, among 144 isolates, eight strains reduced tellurite to tellurium at different rates, with the concomitant production of tellurium deposits. Most tellurite resistance genes were found in strains from Bacillales, with the prevalence of genes of the ter operon. This work demonstrated that bacterial isolates, from environments with a persistent selective pressure, are potential candidates for uncovering strategies for tellurite resistance and/or production of valuable Te-containing materials.202235784792
8708120.9990Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.202133652876
5141130.9990Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023(T) and P7388(T) were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.202134745033
476140.9990Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters. Several studies have suggested the existence of a close relationship between antibiotic-resistant phenotypes and resistance to other toxic compounds such as heavy metals, which involve co-resistance or cross-resistance mechanisms. A metagenomic library was previously constructed in Escherichia coli with DNA extracted from the bacterial community inhabiting an acid mine drainage (AMD) site highly contaminated with heavy metals. Here, we conducted a search for genes involved in antibiotic resistance using this previously constructed library. In particular, resistance to antibiotics was observed among five clones carrying four different loci originating from CARN5 and CARN2, two genomes reconstructed from the metagenomic data. Among the three CARN2 loci, two carry genes homologous to those previously proposed to be involved in antibiotic resistance. The third CARN2 locus carries a gene encoding a membrane transporter with an unknown function and was found to confer bacterial resistance to rifampicin, gentamycin, and kanamycin. The genome of Thiomonas delicata DSM 16361 and Thiomonas sp. X19 were sequenced in this study. Homologs of genes carried on these three CARN2 loci were found in these genomes, two of these loci were found in genomic islands. Together, these findings confirm that AMD environments contaminated with several toxic metals also constitute habitats for bacteria that function as reservoirs for antibiotic resistance genes.201829090447
188150.9990Resistance to ag(i) cations in bacteria: environments, genes and proteins. Bacterial resistance to Ag(I) has been reported periodically with isolates from many environments where toxic levels of silver might be expected to occur, but initial reports were limited to the occurrence of resistant bacteria. The availability of silver-resistance conferring DNA sequences now allow genetic and mechanistic studies that had basically been missing. The genes determining Ag(I) resistance were sequenced from a plasmid found in a burn ward isolate. The 14.2 kb determinant contains seven recognized genes, arranged in three mRNA transcriptional units. The silE gene determines an extracellular (periplasmic space) metal-binding protein of 123 amino acids, including ten histidine residues implicated in Ag(I) binding. SilE is homologous to PcoE, of copper resistance. The next two genes, silR and silS, determine a two protein, histidine-kinase membrane sensor and aspartyl phosphate transcriptional responder, similar to other two component systems such as CzcR and CzcS (for cadmium, zinc and cobalt resistance) and PcoR and PcoS (for copper resistance). The remaining four genes, silCBAP, are co-transcribed and appear to determine Ag(+) efflux, with SilCBA homologous to CzcCBA, a three component cation/proton antiporter, and SilP a novel P-type ATPase with a amino-terminal histidine-rich cation-specificity region. The effects of increasing Ag(+) concentrations and growth medium halides (Cl-, Br- and I-) have been characterized, with lower Cl- concentrations facilitating resistance and higher concentrations toxicity. The properties of this unique Ag(I)-binding SilE protein are being characterized. Sequences similar to the silver-resistance DNA are being characterized by Southern blot DNA/DNA hybridization, PCR in vitro DNA synthesis and DNA sequencing. More than 25 additional closely related sequences have been identified in bacteria from diverse sources. Initial DNA sequencing results shows approximately 5-20% differences in DNA sequences.199918475907
5151160.9990Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.202134659348
266170.9990A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. Sulfonamide-degrading bacteria have been discovered in various environments, suggesting the presence of novel resistance mechanisms via drug inactivation. In this study, Microbacterium sp. CJ77 capable of utilizing various sulfonamides as a sole carbon source was isolated from a composting facility. Genome and proteome analyses revealed that a gene cluster containing a flavin-dependent monooxygenase and a flavin reductase was highly up-regulated in response to sulfonamides. Biochemical analysis showed that the two-component monooxygenase system was key enzymes for the initial cleavage of sulfonamides. Co-expression of the two-component system in Escherichia coli conferred decreased susceptibility to sulfamethoxazole, indicating that the genes encoding drug-inactivating enzymes are potential resistance determinants. Comparative genomic analysis revealed that the gene cluster containing sulfonamide monooxygenase (renamed as sulX) and flavin reductase (sulR) was highly conserved in a genomic island shared among sulfonamide-degrading actinobacteria, all of which also contained sul1-carrying class 1 integrons. These results suggest that the sulfonamide metabolism may have evolved in sulfonamide-resistant bacteria which had already acquired the class 1 integron under sulfonamide selection pressures. Furthermore, the presence of multiple insertion sequence elements and putative composite transposon structures containing the sulX gene cluster indicated potential mobilization. This is the first study to report that sulX responsible for both sulfonamide degradation and resistance is prevalent in sulfonamide-degrading actinobacteria and its genetic signatures indicate horizontal gene transfer of the novel resistance gene.201930928844
8676180.9990Induced Mutagenesis and Comparative Genomics of Raoultella sp. 64 for Enhanced Antimony Resistance and Biosorption. Antimony-resistant bacteria are potential natural resources for the bioremediation of mining soil pollution. A Raoultella sp. 64 strain was isolated from antimony-contaminated soil. To enhance its Sb resistance abilities, this strain was transported into space aboard the Shenzhou spacecraft for space breeding, resulting in a mutant strain, Raoultella sp. D9. The whole genomes of Raoultella sp. 64 and mutant strain Raoultella sp. D9 were sequenced, revealing the genomic information for the bacterium. Comparative genomic analysis was then carried out to identify differential functional genes. The adsorption conditions for Sb(III) were optimized and refined. Further, Fourier transform infrared spectroscopy (FTIR) was used to determine the adsorption of antimony. Results show that strain D9 exhibits a higher tolerance to Sb(III), and Sb resistance genes were identified in both Raoultella sp. 64 and D9. Analysis of the differential functional genes indicated that the increased copy number of plsX may lead to a higher lipid content in the cell membrane, thereby enhancing the cell's resistance to heavy metals. Mutant strain D9 exhibited better biosorption capacity compared to strain 64. FTIR studies showed that key functional groups, including -OH, C-N, C-H, and C-O, are likely to have participated in Sb(III) biosorption. Further study of the differential functional genes could provide a basis for future research and the subsequent development of technologies for the remediation of Sb-contaminated sites.202540284716
6109190.9990Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment.201424764001