Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
512501.0000Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
512410.9998Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. INTRODUCTION: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. METHODS: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. RESULTS AND DISCUSSION: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.202337256057
493520.9995Three Distinct Annotation Platforms Differ in Detection of Antimicrobial Resistance Genes in Long-Read, Short-Read, and Hybrid Sequences Derived from Total Genomic DNA or from Purified Plasmid DNA. Recent advances and lower costs in rapid high-throughput sequencing have engendered hope that whole genome sequencing (WGS) might afford complete resistome characterization in bacterial isolates. WGS is particularly useful for the clinical characterization of fastidious and slow-growing bacteria. Despite its potential, several challenges should be addressed before adopting WGS to detect antimicrobial resistance (AMR) genes in the clinical laboratory. Here, with three distinct ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), different approaches were compared to identify best practices for detecting AMR genes, including: total genomic DNA and plasmid DNA extractions, the solo assembly of Illumina short-reads and of Oxford Nanopore Technologies (ONT) long-reads, two hybrid assembly pipelines, and three in silico AMR databases. We also determined the susceptibility of each strain to 21 antimicrobials. We found that all AMR genes detected in pure plasmid DNA were also detectable in total genomic DNA, indicating that, at least in these three enterobacterial genera, the purification of plasmid DNA was not necessary to detect plasmid-borne AMR genes. Illumina short-reads used with ONT long-reads in either hybrid or polished assemblies of total genomic DNA enhanced the sensitivity and accuracy of AMR gene detection. Phenotypic susceptibility closely corresponded with genotypes identified by sequencing; however, the three AMR databases differed significantly in distinguishing mobile dedicated AMR genes from non-mobile chromosomal housekeeping genes in which rare spontaneous resistance mutations might occur. This study indicates that each method employed in a WGS workflow has an impact on the detection of AMR genes. A combination of short- and long-reads, followed by at least three different AMR databases, should be used for the consistent detection of such genes. Further, an additional step for plasmid DNA purification and sequencing may not be necessary. This study reveals the need for standardized biochemical and informatic procedures and database resources for consistent, reliable AMR genotyping to take full advantage of WGS in order to expedite patient treatment and track AMR genes within the hospital and community.202236290058
512330.9994Ultrafast and Cost-Effective Pathogen Identification and Resistance Gene Detection in a Clinical Setting Using Nanopore Flongle Sequencing. Rapid bacterial identification and antimicrobial resistance gene (ARG) detection are crucial for fast optimization of antibiotic treatment, especially for septic patients where each hour of delayed antibiotic prescription might have lethal consequences. This work investigates whether the Oxford Nanopore Technology's (ONT) Flongle sequencing platform is suitable for real-time sequencing directly from blood cultures to identify bacteria and detect resistance-encoding genes. For the analysis, we used pure bacterial cultures of four clinical isolates of Escherichia coli and Klebsiella pneumoniae and two blood samples spiked with either E. coli or K. pneumoniae that had been cultured overnight. We sequenced both the whole genome and plasmids isolated from these bacteria using two different sequencing kits. Generally, Flongle data allow rapid bacterial ID and resistome detection based on the first 1,000-3,000 generated sequences (10 min to 3 h from the sequencing start), albeit ARG variant identification did not always correspond to ONT MinION and Illumina sequencing-based data. Flongle data are sufficient for 99.9% genome coverage within at most 20,000 (clinical isolates) or 50,000 (positive blood cultures) sequences generated. The SQK-LSK110 Ligation kit resulted in higher genome coverage and more accurate bacterial identification than the SQK-RBK004 Rapid Barcode kit.202235369431
497540.9994Comprehensive genomic and plasmid characterization of multidrug-resistant bacterial strains by R10.4.1 nanopore sequencing. The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum β-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.202438460283
494350.9994Targeted sequencing of Enterobacterales bacteria using CRISPR-Cas9 enrichment and Oxford Nanopore Technologies. Sequencing DNA directly from patient samples enables faster pathogen characterization compared to traditional culture-based approaches, but often yields insufficient sequence data for effective downstream analysis. CRISPR-Cas9 enrichment is designed to improve the yield of low abundance sequences but has not been thoroughly explored with Oxford Nanopore Technologies (ONT) for use in clinical bacterial epidemiology. We designed CRISPR-Cas9 guide RNAs to enrich the human pathogen Klebsiella pneumoniae, by targeting multi-locus sequence type (MLST) and transfer RNA (tRNA) genes, as well as common antimicrobial resistance (AMR) genes and the resistance-associated integron gene intI1. We validated enrichment performance in 20 K. pneumoniae isolates, finding that guides generated successful enrichment across all conserved sites except for one AMR gene in two isolates. Enrichment of MLST genes led to a correct allele call in all seven loci for 8 out of 10 isolates that had depth of 30× or more in these regions. We then compared enriched and unenriched sequencing of three human fecal samples spiked with K. pneumoniae at varying abundance. Enriched sequencing generated 56× and 11.3× the number of AMR and MLST reads, respectively, compared to unenriched sequencing, and required approximately one-third of the computational storage space. Targeting the intI1 gene often led to detection of 10-20 proximal resistance genes due to the long reads produced by ONT sequencing. We demonstrated that CRISPR-Cas9 enrichment combined with ONT sequencing enabled improved genomic characterization outcomes over unenriched sequencing of patient samples. This method could be used to inform infection control strategies by identifying patients colonized with high-risk strains. IMPORTANCE: Understanding bacteria in complex samples can be challenging due to their low abundance, which often results in insufficient data for analysis. To improve the detection of harmful bacteria, we implemented a technique aimed at increasing the amount of data from target pathogens when combined with modern DNA sequencing technologies. Our technique uses CRISPR-Cas9 to target specific gene sequences in the bacterial pathogen Klebsiella pneumoniae and improve recovery from human stool samples. We found our enrichment method to significantly outperform traditional methods, generating far more data originating from our target genes. Additionally, we developed new computational techniques to further enhance the analysis, providing a thorough method for characterizing pathogens from complex biological samples.202539772804
493860.9993Optical maps of plasmids as a proxy for clonal spread of MDR bacteria: a case study of an outbreak in a rural Ethiopian hospital. OBJECTIVES: MDR bacteria have become a prevailing health threat worldwide. We here aimed to use optical DNA mapping (ODM) as a rapid method to trace nosocomial spread of bacterial clones and gene elements. We believe that this method has the potential to be a tool of pivotal importance for MDR control. METHODS: Twenty-four Escherichia coli samples of ST410 from three different wards were collected at an Ethiopian hospital and their plasmids were analysed by ODM. Plasmids were specifically digested with Cas9 targeting the antibiotic resistance genes, stained by competitive binding and confined in nanochannels for imaging. The resulting intensity profiles (barcodes) for each plasmid were compared to identify potential clonal spread of resistant bacteria. RESULTS: ODM demonstrated that a large fraction of the patients carried bacteria with a plasmid of the same origin, carrying the ESBL gene blaCTX-M-15, suggesting clonal spread. The results correlate perfectly with core genome (cg)MLST data, where bacteria with the same plasmid also had very similar cgMLST profiles. CONCLUSIONS: ODM is a rapid discriminatory method for identifying plasmids and antibiotic resistance genes. Long-range deletions/insertions, which are challenging for short-read next-generation sequencing, can be easily identified and used to trace bacterial clonal spread. We propose that plasmid typing can be a useful tool to identify clonal spread of MDR bacteria. Furthermore, the simplicity of the method enables possible future application in low- and middle-income countries.202032653928
497670.9993Trans-Regional and Cross-Host Spread of mcr-Carrying Plasmids Revealed by Complete Plasmid Sequences - 44 Countries, 1998-2020. BACKGROUND: The surveillance of antimicrobial resistance genes (ARGs) and bacteria is one critical approach to prevent and control antimicrobial resistance (AMR). Next-generation sequencing (NGS) is a powerful tool in monitoring the emergence and spread of ARGs and resistant bacteria. The horizontal transfer of ARGs across host bacteria mediated by plasmids is a challenge in NGS surveillance for resistance because short-read sequencing can hardly generate the complete plasmid genome sequence, and the correlation between ARGs and plasmids are difficult to determine. METHODS: The complete genome sequences of 455 mcr-carrying plasmids (pMCRs), and the data of their host bacteria and isolation regions were collected from the NCBI database. Genes of Inc types and ARGs were searched for each plasmid. The genome similarity of these plasmids was analyzed by pangenome clustering and genome alignment. RESULTS: A total of 52 Inc types, including a variety of fusion plasmids containing 2 or more Inc types were identified in these pMCRs and carried by complex host bacteria. The cooccurrence of ARGs in pMCRs was generally observed, with an average of 3.9 ARGs per plasmid. Twenty-two clusters with consistent or highly similar sequences and gene compositions were identified by the pangenome clustering, which were characterized with distributions in different countries/regions, years or host bacteria in each cluster. DISCUSSION: Based on the complete plasmid sequences, distribution of mcr genes in different Inc type plasmids, their co-existence with other AMRs, and transmission of one pMCR across regions and host bacteria can be revealed definitively. Complete plasmid genomes and comparisons in the laboratory network are necessary for spread tracing of ARG-carrying plasmids and risk assessment in AMR surveillance.202235433080
511080.9993Surveillance of carbapenem-resistant organisms using next-generation sequencing. The genomic data generated from next-generation sequencing (NGS) provides nucleotide-level resolution of bacterial genomes which is critical for disease surveillance and the implementation of prevention strategies to interrupt the spread of antimicrobial resistance (AMR) bacteria. Infection with AMR bacteria, including Gram-negative Carbapenem-Resistant Organisms (CRO), may be acute and recurrent-once they have colonized a patient, they are notoriously difficult to eradicate. Through phylogenetic tools that assess the single nucleotide polymorphisms (SNPs) within a pathogen genome dataset, public health scientists can estimate the genetic identity between isolates. This information is used as an epidemiologic proxy of a putative outbreak. Pathogens with minimal to no differences in SNPs are likely to be the same strain attributable to a common source or transmission between cases. These genomic comparisons enhance public health response by prompting targeted intervention and infection control measures. This methodology overview demonstrates the utility of phenotypic and molecular assays, antimicrobial susceptibility testing (AST), NGS, publicly available genomics databases, and open-source bioinformatics pipelines for a tiered workflow to detect resistance genes and potential clusters of illness. These methods, when used in combination, facilitate a genomic surveillance workflow for detecting potential AMR bacterial outbreaks to inform epidemiologic investigations. Use of this workflow helps to target and focus epidemiologic resources to the cases with the highest likelihood of being related.202337255756
494290.9993Nanopore-based enrichment of antimicrobial resistance genes - a case-based study. Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-around times to get and process the data, limiting their usefulness to the practitioner. Here we used real-time, on-device target enrichment ("adaptive") sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes. We compared its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica harbouring three carbapenemases (NDM, KPC, VIM). Based on this experimental data, we then modelled the influence of several variables on the enrichment results and predicted the large effect of nucleotide identity (higher is better) and read length (shorter is better). Lastly, we showed how all relevant resistance genes are detected using adaptive sequencing on a miniature ("Flongle") flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.202336949817
4939100.9993Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. OBJECTIVES: The introduction of metagenomic sequencing to diagnostic microbiology has been hampered by slowness, cost and complexity. We explored whether MinION nanopore sequencing could accelerate diagnosis and resistance profiling, using complicated urinary tract infections as an exemplar. METHODS: Bacterial DNA was enriched from clinical urines (n = 10) and from healthy urines 'spiked' with multiresistant Escherichia coli (n = 5), then sequenced by MinION. Sequences were analysed using external databases and bioinformatic pipelines or, ultimately, using integrated real-time analysis applications. Results were compared with Illumina data and resistance phenotypes. RESULTS: MinION correctly identified pathogens without culture and, among 55 acquired resistance genes detected in the cultivated bacteria by Illumina sequencing, 51 were found by MinION sequencing directly from the urines; with three of the four failures in an early run with low genome coverage. Resistance-conferring mutations and allelic variants were not reliably identified. CONCLUSIONS: MinION sequencing comprehensively identified pathogens and acquired resistance genes from urine in a timeframe similar to PCR (4 h from sample to result). Bioinformatic pipeline optimization is needed to better detect resistances conferred by point mutations. Metagenomic-sequencing-based diagnosis will enable clinicians to adjust antimicrobial therapy before the second dose of a typical (i.e. every 8 h) antibiotic.201727667325
5111110.9993Antimicrobial Resistance Prediction for Gram-Negative Bacteria via Game Theory-Based Feature Evaluation. The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp.201931597945
4977120.9993In silico analyses of diversity and dissemination of antimicrobial resistance genes and mobile genetics elements, for plasmids of enteric pathogens. INTRODUCTION: The antimicrobial resistance (AMR) mobilome plays a key role in the dissemination of resistance genes encoded by mobile genetics elements (MGEs) including plasmids, transposons (Tns), and insertion sequences (ISs). These MGEs contribute to the dissemination of multidrug resistance (MDR) in enteric bacterial pathogens which have been considered as a global public health risk. METHODS: To further understand the diversity and distribution of AMR genes and MGEs across different plasmid types, we utilized multiple sequence-based computational approaches to evaluate AMR-associated plasmid genetics. A collection of 1,309 complete plasmid sequences from Gammaproteobacterial species, including 100 plasmids from each of the following 14 incompatibility (Inc) types: A/C, BO, FIA, FIB, FIC, FIIA, HI1, HI2, I1, K, M, N, P except W, where only 9 sequences were available, was extracted from the National Center for Biotechnology Information (NCBI) GenBank database using BLAST tools. The extracted FASTA files were analyzed using the AMRFinderPlus web-based tools to detect antimicrobial, disinfectant, biocide, and heavy metal resistance genes and ISFinder to identify IS/Tn MGEs within the plasmid sequences. RESULTS AND DISCUSSION: In silico prediction based on plasmid replicon types showed that the resistance genes were diverse among plasmids, yet multiple genes were widely distributed across the plasmids from enteric bacterial species. These findings provide insights into the diversity of resistance genes and that MGEs mediate potential transmission of these genes across multiple plasmid replicon types. This notion was supported by the observation that many IS/Tn MGEs and resistance genes known to be associated with them were common across multiple different plasmid types. Our results provide critical insights about how the diverse population of resistance genes that are carried by the different plasmid types can allow for the dissemination of AMR across enteric bacteria. The results also highlight the value of computational-based approaches and in silico analyses for the assessment of AMR and MGEs, which are important elements of molecular epidemiology and public health outcomes.202236777021
5122130.9993Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5.202541087996
2599140.9992Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. Introduction. Antimicrobial resistance (AMR) poses a critical threat to global health, underscoring the need for rapid and accurate diagnostic tools. Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (ESBL-Kp) are listed among the World Health Organization's priority pathogens.Hypothesis. A rapid nanopore-based protocol can accurately and efficiently detect AMR genes, virulence factors (VFs) and mobile genetic elements (MGEs) in MRSA and ESBL-Kp, offering performance comparable to or superior to traditional sequencing methods.Aim. Evaluate whole-genome sequencing (WGS) protocols for detecting AMR genes, VFs and MGEs in MRSA and ESBL-Kp, to identify the most accurate and efficient tool for pathogen profiling.Methodology. Five distinct WGS protocols, including a rapid nanopore-based protocol (ONT20h) and four slower sequencing methods, were evaluated for their effectiveness in detecting genetic markers. The protocols' performances were compared across AMR genes, VFs and MGEs. Additionally, phenotypic antimicrobial susceptibility testing was performed to assess concordance with the genomic findings.Results. Compared to four slower sequencing protocols, the rapid nanopore-based protocol (ONT20h) demonstrated comparable or superior performance in AMR gene detection and equivalent VF identification. Although MGE detection varied among protocols, ONT20h showed a high level of agreement with phenotypic antimicrobial susceptibility testing.Conclusion. The findings highlight the potential of rapid WGS as a valuable tool for clinical microbiology, enabling timely implementation of infection control measures and informed therapeutic decisions. However, further studies are required to optimize the clinical application of this technology, considering costs, availability of bioinformatics tools and quality of reference databases.202540105741
4926150.9992Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes bla(CTX-M-14), bla(CTX-M-15), and bla(CTX-M-27), which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding bla(CTX-M) genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with bla(CTX-M-15), bla(CTX-M-14), and bla(CTX-M-27) genes identified in three, one, and one isolates, respectively. One sample had no bla(CTX-M) gene. Two samples had chromosomal bla(CTX-M-14) and bla(CTX-M-15) genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.201931068432
5115160.9992Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data. BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.201526197475
4924170.9992PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Plasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the 'plasmidome' from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.201830265232
9885180.9992The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies. Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.202438383544
4934190.9992Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates. Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance determinants to inform molecular diagnostics and drug development. We collected genetic data (11,087 newly-sequenced whole genomes) and culture-based resistance profiles (10,991 out of the 11,087 isolates comprehensively tested against 22 antibiotics in total) of clinical isolates including 18 main species spanning a time period of 30 years. Species and drug specific resistance patterns were observed including increased resistance rates for Acinetobacter baumannii to carbapenems and for Escherichia coli to fluoroquinolones. Species-level pan-genomes were constructed to reflect the genetic repertoire of the respective species, including conserved essential genes and known resistance factors. Integrating phenotypes and genotypes through species-level pan-genomes allowed to infer gene-drug resistance associations using statistical testing. The isolate collection and the analysis results have been integrated into GEAR-base, a resource available for academic research use free of charge at https://gear-base.com.201931100356