# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5104 | 0 | 1.0000 | Microbial communities, antibiotic resistance genes, and virulence factors in urinary infectious stone-associated urinary tract infections. Urinary infectious stones are challenging due to bacterial involvement, necessitating a comprehensive understanding of these conditions. Antibiotic-resistant urease-producing bacteria further complicate clinical management. In this study, analysis of urine and stone samples from urinary tract infection (UTI) patients revealed microbial shifts, gene enrichment in stones, and metabolic pathway disparities; antibiotic resistance gene trends were phylum-specific, urease-producing bacteria are at risk of acquiring AMR carried by Enterobacteriaceae under antibiotic, emphasizing potential AMR dissemination between them; Correlations of key pathogenic species in kidney stone and urine microbial communities highlight the need for targeted therapeutic strategies to manage complexities in UTIs; Stones and urine contain a variety of deleterious genes even before antibiotic use, and piperacillin/tazobactam better reduced the abundance of antibiotic resistance genes in stones and urine. The presence of diverse antibiotic resistance and virulence genes underscores challenges in clinical management and emphasizes the need for effective treatment strategies to mitigate risks associated with UTIs and urinary infectious stone formation. Ongoing research is vital for advancing knowledge and developing innovative approaches to address these urological conditions. | 2024 | 38874649 |
| 4299 | 1 | 0.9998 | Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry. | 2023 | 37222539 |
| 4300 | 2 | 0.9998 | A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance. | 2021 | 34522024 |
| 4297 | 3 | 0.9998 | Predicting clinical resistance prevalence using sewage metagenomic data. Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance. | 2020 | 33244050 |
| 5105 | 4 | 0.9998 | Emerging insights of Staphylococcus spp. in human mastitis. Human mastitis represents a prevalent and intricate condition that significantly challenges breastfeeding women, often exacerbated by pathogenic bacteria such as Staphylococcus aureus. A deep understanding of the interplay between human mastitis, the breast milk microbiome, and causative agents is imperative. This understanding must focus on the bacterium's virulence and resistance genes, which critically influence the severity and persistence of mastitis. Current methods for detecting these genes, including Polymerase Chain Reaction (PCR), 16S rRNA gene sequencing, shotgun metagenomic sequencing, multiplex PCR, whole genome sequencing (WGS), loop-mediated isothermal amplification (LAMP), CRISPR-based assays, and microarray technology, are vital in elucidating bacterial pathogenicity and resistance profiles. However, advanced attention is required to refine diagnostic techniques, enabling earlier detection and more effective therapeutic approaches for human mastitis. The involvement of Staphylococcus aureus in human infection should be a prime focus, especially in women's health, which deals directly with neonates. Essential virulence genes in Staphylococcus species are instrumental in infection mechanisms and antibiotic resistance, serving as potential targets for personalized treatments. Thus, this review focuses on Staphylococcusaureus-induced mastitis, examining its virulence factors and detection techniques to advance diagnostic and therapeutic strategies. | 2025 | 40349998 |
| 6624 | 5 | 0.9997 | Water as a Source of Antimicrobial Resistance and Healthcare-Associated Infections. Healthcare-associated infections (HAIs) are one of the most common patient complications, affecting 7% of patients in developed countries each year. The rise of antimicrobial resistant (AMR) bacteria has been identified as one of the biggest global health challenges, resulting in an estimated 23,000 deaths in the US annually. Environmental reservoirs for AMR bacteria such as bed rails, light switches and doorknobs have been identified in the past and addressed with infection prevention guidelines. However, water and water-related devices are often overlooked as potential sources of HAI outbreaks. This systematic review examines the role of water and water-related devices in the transmission of AMR bacteria responsible for HAIs, discussing common waterborne devices, pathogens, and surveillance strategies. AMR strains of previously described waterborne pathogens including Pseudomonas aeruginosa, Mycobacterium spp., and Legionella spp. were commonly isolated. However, methicillin-resistant Staphylococcus aureus and carbapenem-resistant Enterobacteriaceae that are not typically associated with water were also isolated. Biofilms were identified as a hot spot for the dissemination of genes responsible for survival functions. A limitation identified was a lack of consistency between environmental screening scope, isolation methodology, and antimicrobial resistance characterization. Broad universal environmental surveillance guidelines must be developed and adopted to monitor AMR pathogens, allowing prediction of future threats before waterborne infection outbreaks occur. | 2020 | 32824770 |
| 3900 | 6 | 0.9997 | Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ. | 2020 | 32838793 |
| 4886 | 7 | 0.9997 | Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. Antimicrobial resistance (AMR) among bacteria is an escalating public health emergency that has worsened during the COVID-19 pandemic. When making antibiotic treatment decisions, clinicians rely heavily on determination of antibiotic susceptibility or resistance by the microbiology laboratory, but conventional methods often take several days to identify AMR. There are now several commercially available molecular methods that detect antibiotic resistance genes within hours rather than days. While these methods have limitations, they offer promise for optimizing treatment and patient outcomes, and reducing further emergence of AMR. This review provides an overview of commercially available genotypic assays that detect individual resistance genes and/or resistance-associated mutations in a variety of specimen types and discusses how clinical outcomes studies may be used to demonstrate clinical utility of such diagnostics. | 2023 | 36816746 |
| 6613 | 8 | 0.9997 | Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of "last resort" there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission. | 2021 | 33582841 |
| 4893 | 9 | 0.9997 | Molecular Characterization of Multidrug-Resistant Shigella flexneri. Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment. | 2024 | 38435906 |
| 6633 | 10 | 0.9997 | Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis in North Africa. Infections caused by human pathogenic bacteria in food sources pose significant and widespread concerns, leading to substantial economic losses and adverse impacts on public health. This review seeks to shed light on the recent literature addressing the prevalence of Salmonella in the food supply chains of North African countries. Additionally, it aims to provide an overview of the available information regarding health-related concerns, such as virulence genes, and the presence of antibiotic resistance in Salmonella. This review highlights a gap in our comprehensive understanding of Salmonella prevalence in the food supply chains of North African nations, with limited molecular characterization efforts to identify its sources. Studies at the molecular level across the region have shown the diversity of Salmonella strains and their virulence profiles, thus, these results show the difficulty of controlling Salmonella infections in the region. In addition, the discussion of antibiotic resistance makes it clear that there is a need for the development of comprehensive strategies to fight the potential threat of antimicrobial resistance in Salmonella strains. Despite common reports on animal-derived foods in this region, this review underscores the persistent challenges that Salmonella may pose to food safety and public health in North African countries. | 2025 | 39856919 |
| 6593 | 11 | 0.9997 | Metagenomic analysis of human, animal, and environmental samples identifies potential emerging pathogens, profiles antibiotic resistance genes, and reveals horizontal gene transfer dynamics. Antimicrobial resistance (AMR) poses a significant threat to global health. The indiscriminate use of antibiotics has accelerated the emergence and spread of drug-resistant bacteria, compromising our ability to treat infectious diseases. A One Health approach is essential to address this urgent issue, recognizing the interconnectedness of human, animal, and environmental health. This study investigated the prevalence and transmission of AMR in a temporary settlement in Kathmandu, Nepal. By employing shotgun metagenomics, we analyzed a diverse range of samples, including human fecal samples, avian fecal samples, and environmental samples. Our analysis revealed a complex interplay of pathogenic bacteria, virulence factors (VF), and antimicrobial resistance genes (ARGs) across these different domains. We identified a diverse range of bacterial species, including potential pathogens, in both human and animal samples. Notably, Prevotella spp. was the dominant gut bacterium in human samples. Additionally, we detected a wide range of phages and viruses, including Stx-2 converting phages, which can contribute to the virulence of Shiga toxin-producing E. coli (STEC) strains. Our analysis revealed the presence of 72 virulence factor genes and 53 ARG subtypes across the studied samples. Poultry samples exhibited the highest number of ARG subtypes, suggesting that the intensive use of antibiotics in poultry production may contribute to the dissemination of AMR. Furthermore, we observed frequent horizontal gene transfer (HGT) events, with gut microbiomes serving as key reservoirs for ARGs. This study underscores the critical role of a One Health approach in addressing AMR. By integrating human, animal, and environmental health perspectives, we can better understand the complex dynamics of AMR and develop effective strategies for prevention and control. Our findings highlight the urgent need for robust surveillance systems, judicious antibiotic use, and improved hygiene practices to mitigate the impact of AMR on public health. | 2025 | 40204742 |
| 6601 | 12 | 0.9997 | Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Antimicrobial resistance (AMR) presents a global health challenge, necessitating comprehensive surveillance and intervention strategies. Wastewater-based epidemiology (WBE) is a promising tool that can be utilized for AMR monitoring by offering population-level insights into microbial dynamics and resistance gene dissemination in communities. This review (n = 29 papers) examines the current landscape of utilizing WBE for AMR surveillance with a focus on methodologies, findings, and gaps in understanding. Reported methods from the reviewed literature included culture-based, PCR-based, whole genome sequencing, mass spectrometry, bioinformatics/metagenomics, and antimicrobial susceptibility testing to identify and measure antibiotic-resistant bacteria and antimicrobial resistance genes (ARGs) in wastewater, as well as liquid chromatography-tandem mass spectrometry to measure antibiotic residues. Results indicate Escherichia coli, Enterococcus spp., and Pseudomonas spp. are the most prevalent antibiotic-resistant bacterial species with hospital effluent demonstrating higher abundances of clinically relevant resistance genes including bla, bcr, qnrS, mcr, sul1, erm, and tet genes compared to measurements from local treatment plants. The most reported antibiotics in influent wastewater across studies analyzed include azithromycin, ciprofloxacin, clindamycin, and clarithromycin. The influence of seasonal variation on the ARG profiles of communities differed amongst studies indicating additional factors hold significance when examining the conference of AMR within communities. Despite these findings, knowledge gaps remain, including longitudinal studies in multiple and diverse geographical regions and understanding co-resistance mechanisms in relation to the complexities of population contributors to AMR. This review underscores the urgent need for collaborative and interdisciplinary efforts to safeguard public health and preserve antimicrobial efficacy. Further investigation on the use of WBE to understand these unique population-level drivers of AMR is advised in a proposed framework to inform best practice approaches moving forward. | 2025 | 41011405 |
| 6631 | 13 | 0.9997 | Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed. | 2018 | 29554996 |
| 5106 | 14 | 0.9997 | Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from Côte d'Ivoire: a proof-of-concept study. BACKGROUND: The intestinal microbiome is a complex community and its role in influencing human health is poorly understood. While conventional microbiology commonly attributes digestive disorders to a single microorganism, a metagenomic approach can detect multiple pathogens simultaneously and might elucidate the role of microbial communities in the pathogenesis of intestinal diseases. We present a proof-of-concept that a shotgun metagenomic approach provides useful information on the diverse composition of intestinal pathogens and antimicrobial resistance profiles in human stool samples. METHODS: In October 2012, we obtained stool specimens from patients with persistent diarrhea in south Côte d'Ivoire. Four stool samples were purposefully selected and subjected to microscopy, multiplex polymerase chain reaction (PCR), and a metagenomic approach. For the latter, we employed the National Center for Biotechnology Information nucleotide database and screened for 36 pathogenic organisms (bacteria, helminths, intestinal protozoa, and viruses) that may cause digestive disorders. We further characterized the bacterial population and the prevailing resistance patterns by comparing our metagenomic datasets with a genome-specific marker database and with a comprehensive antibiotic resistance database. RESULTS: In the four patients, the metagenomic approach identified between eight and 11 pathogen classes that potentially cause digestive disorders. For bacterial pathogens, the diagnostic agreement between multiplex PCR and metagenomics was high; yet, metagenomics diagnosed several bacteria not detected by multiplex PCR. In contrast, some of the helminth and intestinal protozoa infections detected by microscopy were missed by metagenomics. The antimicrobial resistance analysis revealed the presence of genes conferring resistance to several commonly used antibiotics. CONCLUSIONS: A metagenomic approach provides detailed information on the presence and diversity of pathogenic organisms in human stool samples. Metagenomic studies allow for in-depth molecular characterization such as the antimicrobial resistance status, which may be useful to develop setting-specific treatment algorithms. While metagenomic approaches remain challenging, the benefits of gaining new insights into intestinal microbial communities call for a broader application in epidemiologic studies. TRIAL REGISTRATION: ISRCTN86951400. | 2016 | 26391184 |
| 6719 | 15 | 0.9997 | Impacts of Antibiotic Residues in the Environment on Bacterial Resistance and Human Health in Eastern China: An Interdisciplinary Mixed-Methods Study Protocol. Antibiotic resistance is a global health challenge that threatens human and animal lives, especially among low-income and vulnerable populations in less-developed countries. Its multi-factorial nature requires integrated studies on antibiotics and resistant bacteria in humans, animals, and the environment. To achieve a comprehensive understanding of the situation and management of antibiotic use and environmental transmission, this paper describes a study protocol to document human exposure to antibiotics from major direct and indirect sources, and its potential health outcomes. Our mixed-methods approach addresses both microbiological and pathogen genomics, and epidemiological, geospatial, anthropological, and sociological aspects. Implemented in two rural residential areas in two provinces in Eastern China, linked sub-studies assess antibiotic exposure in population cohorts through household surveys, medicine diaries, and biological sampling; identify the types and frequencies of antibiotic resistance genes in humans and food-stock animals; quantify the presence of antibiotic residues and antibiotic resistance genes in the aquatic environment, including wastewater; investigate the drivers and behaviours associated with human and livestock antibiotic use; and analyse the national and local policy context, to propose strategies and systematic measurements for optimising and monitoring antibiotic use. As a multidisciplinary collaboration between institutions in the UK and China, this study will provide an in-depth understanding of the influencing factors and allow comprehensive awareness of the complexity of AMR and antibiotic use in rural Eastern China. | 2022 | 35805804 |
| 6706 | 16 | 0.9997 | Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk. | 2022 | 35740227 |
| 4990 | 17 | 0.9997 | From soil to surface water: exploring Klebsiella 's clonal lineages and antibiotic resistance odyssey in environmental health. In the last decade, the presence of resistant bacteria and resistance genes in the environment has been a cause for increasing concern. However, understanding of its contribution to the spread of bacteria remains limited, as the scarcity of studies on how and under what circumstances the environment facilitates the development of resistance poses challenges in mitigating the emergence and spread of mobile resistance factors. Antimicrobial resistance in the environment is considered one of the biggest challenges and threats currently emerging. Thus, monitoring the presence of antibiotic-resistant species, in this particular case, Klebsiella spp., in the environment can be an added value for understanding the epidemiology of infections caused by Klebsiella spp.. Investigating soils and waters as potential reservoirs and transmission vehicles for these bacteria is imperative. Therefore, in this review, we aimed to describe the main genetic lineages present in environmental samples, as well as to describe the multidrug resistance strains associated with each environmental source. The studies analyzed in this review reported a high diversity of species and strains of Klebsiella spp. in the environment. K. pneumoniae was the most prevalent species, both in soil and water samples, and, as expected, often presented a multi-resistant profile. The presence of K. pneumoniae ST11, ST15, and ST147 suggests human and animal origin. Concerning surface waters, there was a great diversity of species and STs of Klebsiella spp. These studies are crucial for assessing the environmental contribution to the spread of pathogenic bacteria. | 2025 | 40012032 |
| 6707 | 18 | 0.9997 | Investigating the occurrence of antimicrobial resistance in the environment in Canada: a scoping review. Antimicrobial resistance is an environmental, agricultural, and public health problem that is impacting the health of humans and animals. The role of the environment as a source of and transmission pathway for antibiotic resistant bacteria and antibiotic resistance genes is a topic of increasing interest that, to date, has received limited attention. This study aimed to describe the sources and possible pathways contributing to antimicrobial resistance dissemination through bioaerosols, water, and soil in Canada using a scoping review methodology and systems thinking approach. A systems map was created to describe the occurrence and relationships between sources and pathways for antimicrobial resistance dissemination through water, soil, and bioaerosols. The map guided the development of the scoping review protocol, specifically the keywords searched and what data were extracted from the included studies. In total, 103 studies of antimicrobial resistance in water, 67 in soil, and 12 in air were identified. Studies to detect the presence of antimicrobial resistance genes have mainly been conducted at wastewater treatment plants and commercial animal livestock facilities. We also identified elements in the systems map with little or no data available (e.g., retail) that need to be investigated further to have a better understanding of antimicrobial resistance dissemination through different Canadian environments. | 2025 | 40279669 |
| 4980 | 19 | 0.9997 | Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. BACKGROUND: The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS: Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS: A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION: These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria. | 2025 | 39732420 |