Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
50801.0000Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.202438156502
881010.9982Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.202337806135
819620.9981The pentose phosphate pathway is essential for the resistance of Gluconacetobacter diazotrophicus PAL5 to zinc. Zinc (Zn) is an essential metal for the metabolism of bacteria, but in high concentrations, it may be toxic to cells. Gluconacetobacter diazotrophicus is a Gram-negative bacterium characterized by its ability to promote plant growth. Moreover, G. diazotrophicus can survive under challenging conditions, including metal stress. However, the mechanisms that control its resistance to metals require further investigation. This work investigated the main molecular mechanisms associated with the resistance of G. diazotrophicus PAL5 to Zn. Comparative proteomic analyses aimed to identify molecular pathways, and essential proteins were validated by mutagenesis. The main molecular pathways identified by proteomics included response to oxidative stress, sugar metabolism, nutrient uptake, cell envelope metabolism, protein quality control, and the efflux pump system. Mutagenesis showed that the absence of the genes ggt (response to oxidative stress), pgl (sugar metabolism), accC (cell envelope metabolism), tbdR (nutrient uptake), clpX and degP (protein quality control), and czcC (efflux pump system) increased the sensitivity of G. diazotrophicus mutants to Zn. Our results identified essential molecular mechanisms for Zn resistance in G. diazotrophicus, highlighting the essential role of the pentose phosphate pathway.202540999116
859630.9980Stringent response-mediated ferroptosis-like death resistance underlies Novosphingobium persistence during ciprofloxacin stress. Antibiotics, as emerging hazardous materials in the environment, pose significant risks to ecosystems and contribute to the spread of antibiotic-resistant bacteria. Although extensive knowledge has been accumulated on antibiotic-resistance mechanisms in individual bacteria, less is understood about how the bacterial communities respond to antibiotic exposure under natural environmental conditions, where nutrient supplies are often limited and fluctuating. Here, we report that Novosphingobium dominated in a wetland bacterial community under 1 µg/mL ciprofloxacin (CIP) exposure and persisted during DL-serine hydroxamate-induced starvation, where the stringent response alarmer (p)ppGpp was detected. Metagenome sequencing revealed that genes associated with siderophore transport, cytochrome c, and glutathione S-transferase were significantly enriched in Novosphingobium, linking its dominance under CIP stress to iron homeostasis and oxidative stress responses. Further study on the survival mechanism of Novosphingobium pentaromativorans US6-1 under 8 µg/mL CIP stress demonstrated that stringent response regulated the growth rate and maintained cell viability by suppressing the TCA cycle and oxidative phosphorylation, deterring the entry of CIP and siderophore into cells, reducing intracellular ferrous iron and malondialdehyde, and balancing cellular redox status, thereby protecting cells from ferroptosis-like death. This study is the first to report Novosphingobium's dominance and persistence in a bacterial community during CIP stress in natural environmental conditions and to propose the stringent response-mediated ferroptosis-like death resistance as one of its key survival mechanisms.IMPORTANCEAntibiotics in the environment are increasingly recognized as a new class of pollutants that accelerate the evolutionary selection of antibiotic-resistant bacteria. However, little is known about how this selection occurs under natural conditions, including how specific bacteria taxa and mechanisms respond to particular antibiotics. This study reveals for the first time the selection effect of CIP on Novosphingobium under nutrient-limited conditions, during which stringent response and iron homeostasis play important roles. An innovative linkage between stringent response and ferroptosis-like death resistance is proposed in N. pentaromativorans US6-1, which serves as the CIP resistance mechanism for Novosphingobium. These findings may help inform strategies to combat antimicrobial resistance in the natural environment.202540952106
830340.9979Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress conditions and potential strategies to prevent antimicrobial-resistance in space and on Earth.201829615983
854350.9979Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Sodium sulfate stress is known to improve cadmium (Cd) mobilization in soil and microbial sulfur oxidation, Cd resistance, and the accumulation of stress tolerance-associated metabolites has been correlated with increased soil Cd availability and toxicity. In this study, aerobic soil microcosms with Cd-contamination were stimulated with sodium sulfate to investigate its effects on soil microbial community structure, functional genes, and associated metabolite profiles. Metagenomic analysis revealed that sulfur oxidizing and Cd-resistant bacteria carried gene clusters encoding sox, dsr, and sqr genes, and znt, czc, and cad genes, respectively. Exposure to sodium sulfate resulted in the reprogram of soil metabolites. In particular, intensification of sulfur metabolism triggered an up-regulation in the tricarboxylic acid (TCA) cycle, which promoted the secretion of carboxylic acids and their precursors by soil bacteria. The accumulation of organic acids induced in response to high sodium sulfate dosages potentially drove an observed increase in Cd mobility. Pseudomonas and Erythrobacter spp. exhibited a high capacity for adaptation to heavy metal- or sulfur-induced stress, evident by an increased abundance of genes and metabolites for sulfur cycling and Cd resistance. These results provide valuable insights towards understanding the microbial mechanisms of sulfur transformation and Cd dissolution under saline stress.202134214562
881260.9978Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. In the past 20 years, there has been a major stride in understanding the core mechanism of anaerobic ammonium-oxidizing (anammox) bacteria, but there are still several discussion points on their survival strategies. Here, we discovered a new genus of anammox bacteria in a full-scale wastewater-treating biofilm system, tentatively named "Candidatus Loosdrechtia aerotolerans". Next to genes of all core anammox metabolisms, it encoded and transcribed genes involved in the dissimilatory nitrate reduction to ammonium (DNRA), which coupled to oxidation of small organic acids, could be used to replenish ammonium and sustain their metabolism. Surprisingly, it uniquely harbored a new ferredoxin-dependent nitrate reductase, which has not yet been found in any other anammox genome and might confer a selective advantage to it in nitrate assimilation. Similar to many other microorganisms, superoxide dismutase and catalase related to oxidative stress resistance were encoded and transcribed by "Ca. Loosdrechtia aerotolerans". Interestingly, bilirubin oxidase (BOD), likely involved in oxygen resistance of anammox bacteria under fluctuating oxygen concentrations, was identified in "Ca. Loosdrechtia aerotolerans" and four Ca. Brocadia genomes, and its activity was demonstrated using purified heterologously expressed proteins. A following survey of oxygen-active proteins in anammox bacteria revealed the presence of other previously undetected oxygen defense systems. The novel cbb3-type cytochrome c oxidase and bifunctional catalase-peroxidase may confer a selective advantage to Ca. Kuenenia and Ca. Scalindua that face frequent changes in oxygen concentrations. The discovery of this new genus significantly broadens our understanding of the ecophysiology of anammox bacteria. Furthermore, the diverse oxygen tolerance strategies employed by distinct anammox bacteria advance our understanding of their niche adaptability and provide valuable insight for the operation of anammox-based wastewater treatment systems.202236257158
819570.9978Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance.202133035671
67280.9978Trehalose Biosynthesis Gene otsA Protects against Stress in the Initial Infection Stage of Burkholderia-Bean Bug Symbiosis. Trehalose, a nonreducing disaccharide, functions as a stress protectant in many organisms, including bacteria. In symbioses involving bacteria, the bacteria have to overcome various stressors to associate with their hosts; thus, trehalose biosynthesis may be important for symbiotic bacteria. Here, we investigated the role of trehalose biosynthesis in the Burkholderia-bean bug symbiosis. Expression levels of two trehalose biosynthesis genes, otsA and treS, were elevated in symbiotic Burkholderia insecticola cells, and hence mutant ΔotsA and ΔtreS strains were generated to examine the functions of these genes in symbiosis. An in vivo competition assay with the wild-type strain revealed that fewer ΔotsA cells, but not ΔtreS cells, colonized the host symbiotic organ, the M4 midgut, than wild-type cells. The ΔotsA strain was susceptible to osmotic pressure generated by high salt or high sucrose concentrations, suggesting that the reduced symbiotic competitiveness of the ΔotsA strain was due to the loss of stress resistance. We further demonstrated that fewer ΔotsA cells infected the M4 midgut initially but that fifth-instar nymphs exhibited similar symbiont population size as the wild-type strain. Together, these results demonstrated that the stress resistance role of otsA is important for B. insecticola to overcome the stresses it encounters during passage through the midgut regions to M4 in the initial infection stage but plays no role in resistance to stresses inside the M4 midgut in the persistent stage. IMPORTANCE Symbiotic bacteria have to overcome stressful conditions present in association with the host. In the Burkholderia-bean bug symbiosis, we speculated that a stress-resistant function of Burkholderia is important and that trehalose, known as a stress protectant, plays a role in the symbiotic association. Using otsA, the trehalose biosynthesis gene, and a mutant strain, we demonstrated that otsA confers Burkholderia with competitiveness when establishing a symbiotic association with bean bugs, especially playing a role in initial infection stage. In vitro assays revealed that otsA provides the resistance against osmotic stresses. Hemipteran insects, including bean bugs, feed on plant phloem sap, which may lead to high osmotic pressures in the midguts of hemipterans. Our results indicated that the stress-resistant role of otsA is important for Burkholderia to overcome the osmotic stresses present during the passage through midgut regions to reach the symbiotic organ.202336976011
67990.9978RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO(4) in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO(4) induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO(4). These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.202235341314
8680100.9978Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). It has been widely reported that pH mediates cadmium toxicity to bacteria. We used a tripartite approach to investigate mechanisms by which pH affects cadmium toxicity that included analyses of: (1) growth kinetics, (2) global gene expression, and (3) cadmium speciation. Cadmium extended the lag phase at pH 7, but not at pH 5. DNA microarray analysis revealed that stress response genes including hdeA, otsA, and yjbJ were more highly expressed at pH 5 than at pH 7 after only 5 min of exposure to cadmium, suggesting that acidic pH more rapidly induced genes that confer cadmium resistance. In addition, genes involved in transport and many hypothetical genes were more highly expressed at pH 5 than at pH 7 in the presence of cadmium. Concentrations of two cadmium species, including one previously implicated in the mechanism by which pH mediates cadmium toxicity (CdOH+), increased with pH. Our data demonstrate that transcriptional responses of Escherichia coli to cadmium are substantially affected by pH and suggest that several stress response, transport, and hypothetical genes play roles in the mechanism by which pH mediates cadmium toxicity.200919220470
8675110.9978Adaptive Strategies in a Poly-Extreme Environment: Differentiation of Vegetative Cells in Serratia ureilytica and Resistance to Extreme Conditions. Poly-extreme terrestrial habitats are often used as analogs to extra-terrestrial environments. Understanding the adaptive strategies allowing bacteria to thrive and survive under these conditions could help in our quest for extra-terrestrial planets suitable for life and understanding how life evolved in the harsh early earth conditions. A prime example of such a survival strategy is the modification of vegetative cells into resistant resting structures. These differentiated cells are often observed in response to harsh environmental conditions. The environmental strain (strain Lr5/4) belonging to Serratia ureilytica was isolated from a geothermal spring in Lirima, Atacama Desert, Chile. The Atacama Desert is the driest habitat on Earth and furthermore, due to its high altitude, it is exposed to an increased amount of UV radiation. The geothermal spring from which the strain was isolated is oligotrophic and the temperature of 54°C exceeds mesophilic conditions (15 to 45°C). Although the vegetative cells were tolerant to various environmental insults (desiccation, extreme pH, glycerol), a modified cell type was formed in response to nutrient deprivation, UV radiation and thermal shock. Scanning (SEM) and Transmission Electron Microscopy (TEM) analyses of vegetative cells and the modified cell structures were performed. In SEM, a change toward a circular shape with reduced size was observed. These circular cells possessed what appears as extra coating layers under TEM. The resistance of the modified cells was also investigated, they were resistant to wet heat, UV radiation and desiccation, while vegetative cells did not withstand any of those conditions. A phylogenomic analysis was undertaken to investigate the presence of known genes involved in dormancy in other bacterial clades. Genes related to spore-formation in Myxococcus and Firmicutes were found in S. ureilytica Lr5/4 genome; however, these genes were not enough for a full sporulation pathway that resembles either group. Although, the molecular pathway of cell differentiation in S. ureilytica Lr5/4 is not fully defined, the identified genes may contribute to the modified phenotype in the Serratia genus. Here, we show that a modified cell structure can occur as a response to extremity in a species that was previously not known to deploy this strategy. This strategy may be widely spread in bacteria, but only expressed under poly-extreme environmental conditions.201930804904
8813120.9978Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.202438587638
721130.9977Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.201222381957
8149140.9977Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.201526238382
8300150.9977The Copper Resistome of Group B Streptococcus Reveals Insight into the Genetic Basis of Cellular Survival during Metal Ion Stress. In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS), a system for control of Cu efflux based on the prototypical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to the management of cellular Cu homeostasis. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compare it to nonexposed controls en masse. Eight genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters, and cell signaling factors. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contributes to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis. IMPORTANCE Genetic systems for copper (Cu) homeostasis in bacteria, including streptococci, are vital to survive metal ion stress. Genetic systems that underpin survival of GBS during Cu stress, beyond the archetypal cop operon for Cu management, are undefined. We show that Streptococcus resists Cu intoxication by utilizing a discrete and limited suite of genes beyond the cop operon, including several genes that are new to the area of bacterial cell metal ion homeostasis. The Cu resistome of GBS defined here enhances our understanding of metal ion homeostasis in GBS.202235404113
8814160.9977Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Cadmium (Cd) and nickel (Ni) are two of the most toxic metals, wreaking havoc on human health and agricultural output. Furthermore, high levels of Cd and Ni in the soil environment, particularly in the root zone, may slow plant development, resulting in lower plant biomass. On the other hand, endophytic bacteria offer great promise for reducing Cd and Ni. Moreover, they boost plants' resistance to heavy metal stress. Different bacterium strains were isolated from tomato roots. These isolates were identified as Micrococcus luteus and Enterobacter cloacae using 16SrDNA and were utilized to investigate their involvement in mitigating the detrimental effects of heavy metal stress. The two bacterial strains can solubilize phosphorus and create phytohormones as well as siderophores. Therefore, the objective of this study was to see how endophytic bacteria (Micrococcus luteus and Enterobactercloacae) affected the mitigation of stress from Cd and Ni in tomato plants grown in 50 μM Cd or Ni-contaminated soil. According to the findings, Cd and Ni considerably lowered growth, biomass, chlorophyll (Chl) content, and photosynthetic properties. Furthermore, the content of proline, phenol, malondialdehyde (MDA), H(2)O(2), OH, O(2), the antioxidant defense system, and heavy metal (HM) contents were significantly raised under HM-stress conditions. However, endophytic bacteria greatly improved the resistance of tomato plants to HM stress by boosting enzymatic antioxidant defenses (i.e., catalase, peroxidase, superoxide dismutase, glutathione reductase, ascorbate peroxidase, lipoxygenase activity, and nitrate reductase), antioxidant, non-enzymatic defenses, and osmolyte substances such as proline, mineral content, and specific regulatory defense genes. Moreover, the plants treated had a higher value for bioconcentration factor (BCF) and translocation factor (TF) due to more extensive loss of Cd and Ni content from the soil. To summarize, the promotion of endophytic bacterium-induced HM resistance in tomato plants is essentially dependent on the influence of endophytic bacteria on antioxidant capacity and osmoregulation.202235956496
153170.9977Both arginine and fructose stimulate pH-independent resistance in the wine bacteria Oenococcus oeni. The wine bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. So how can O. oeni bacteria naturally present on the surface of grape berries acquire a natural resistance that will alleviate the effect of wine stresses? One mechanism displayed by O. oeni and many other bacteria against the damaging effects of acid environments is arginine consumption through the arginine deiminase pathway. Various studies have shown that the bacterial protection conferred by arginine depends on the rise in pH associated with ammonia production. However, many experimental results disagree with this point of view. The aim of this study was to clarify the protective effect of arginine on O. oeni stress adaptation. Is it only by increasing the pH through ammonia production that this effect is triggered, or does stimulation of appropriate cellular responses play an additional role? This study shows that: (a) arginine in combination with fructose triggers the expression of a subset of genes which are also stress-responsive; (b) cultivation of O. oeni in a fructose- and arginine-supplemented medium prior to wine exposure protects bacteria against subsequent wine shock, and (c) this acquired stress resistance is independent of pH.200616380184
8817180.9977Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.202438677604
8294190.9977Unraveling the genetic mechanisms of UV radiation resistance in Bacillus through biofilm formation, sporulation, and carotenoid production. Bacillus species are Gram-positive bacteria that are rod-shaped, endospore-forming, and aerobic or facultatively anaerobic. With over 300 recognized species, Bacillus subtilis stands out as a well-studied model organism. The genus's various species exhibit a wide range of physiological capabilities, allowing them to thrive in diverse environmental conditions. Each cell produces a single endospore, which is highly resistant to heat, cold, radiation, desiccation, and disinfectants. Among Bacillus strains, those capable of producing spores, biofilms, and carotenoids demonstrate significant resilience to UV light. This review examines the genes involved in spore formation, biofilm development, and carotenoid synthesis, emphasizing their roles in UV radiation survival. We explore the interconnections between these processes and their combined contribution to UV resistance, focusing on the underlying genetic mechanisms. These insights will benefit researchers studying the genetic basis of UV radiation resistance in Bacillus species. IMPORTANCE: Bacteria employ adaptive strategies in extreme environments through rapid changes in gene expression, altering their phenotype for survival. Bacillus species, for example, defend against UV radiation by making spores, creating biofilms, and producing pigments. During sporulation, sigma factors (σ(F), σ(E), σ(G), and σ(K)) regulate gene expression to adapt to environmental shifts. It has been found that the spores of some species may contain pigments that strongly absorb UV radiation, playing a crucial role in spore UV resistance. UV light penetrates biofilm matrices minimally, mainly affecting surface cells, which produce compounds like mycosporine-like amino acids and carotenoids to shield against UV damage.202540456420