# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5085 | 0 | 1.0000 | Multiplex asymmetric PCR-based oligonucleotide microarray for detection of drug resistance genes containing single mutations in Enterobacteriaceae. A multiplex asymmetric PCR (MAPCR)-based microarray method was developed for the detection of 10 known extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC beta-lactamase genes in gram-negative bacteria and for the typing of six important point mutations (amino acid positions 35, 43, 130, 179, 238, and 240) in the bla(SHV) gene. The MAPCR is based on a two-round reaction to promote the accumulation of the single-stranded amplicons amenable for microarray hybridization by employing multiple universal unrelated sequence-tagged primers and elevating the annealing temperature at the second round of amplification. A strategy to improve the discrimination efficiency of the microarray was constituted by introducing an artificial mismatch into some of the allele-specific oligonucleotide probes. The microarray assay correctly identified the resistance genes in both the reference strains and some 111 clinical isolates, and these results were also confirmed for some isolates by direct DNA sequence analysis. The resistance genotypes determined by the microarray correlated closely with phenotypic MIC susceptibility testing. This fast MAPCR-based microarray method should prove useful for undertaking important epidemiological studies concerning ESBLs and plasmid-mediated AmpC enzymes and could also prove invaluable as a preliminary screen to supplement phenotypic testing for clinical diagnostics. | 2007 | 17646412 |
| 5973 | 1 | 0.9997 | DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria. | 2006 | 16427254 |
| 5041 | 2 | 0.9997 | Development and Validation of a Clinical Laboratory Improvement Amendments-Compliant Multiplex Real-Time PCR Assay for Detection of mcr Genes. Increased use of colistin in both human and veterinary medicine has led to the emergence of plasmid-mediated colistin resistance (mcr genes). In this study, we report the development of a real-time PCR assay using TaqMan probe-based chemistry for detection of mcr genes from bacterial isolates. Positive control isolates harboring mcr-1 and mcr-2 yielded exponential amplification curves with the assay, and the amplification efficiency was 98% and 96% for mcr-1 and mcr-2, respectively. Each target gene could be reproducibly detected from a sample containing 10(3) cfu/mL of mcr-harboring bacteria, and there was no cross-reactivity with DNA extracted from several multidrug-resistant bacteria harboring other resistance genes, but lacking mcr genes. Both sensitivity and specificity of the mcr real-time PCR assay were 100% in a method validation performed with a set of 25 previously well-characterized bacterial isolates containing mcr-positive and -negative bacteria. This newly developed assay is a rapid and sensitive tool for detecting emerging mcr genes in cultured bacterial isolates. The assay was successfully validated according to quality standards of the Clinical Laboratory Improvement Amendments (CLIA). | 2019 | 30942652 |
| 2082 | 3 | 0.9997 | Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. A screening technique for integrons in members of the family Enterobacteriaceae and nonfermenting gram-negative bacteria by real-time PCR is reported. A total of 226 isolates of gram-negative bacteria obtained from a variety of clinical specimens were screened for class 1 integrons by real-time PCR performed on a LightCycler instrument. This technique used a primer pair specific for a 300-bp conserved region at the 5' ends of class 1 integrons. The screening assay was evaluated by comparison with results obtained by the conventional, thermal-block PCR (long PCR) by using established conditions and primers for the detection of class 1 integrons, and the real-time PCR technique was thus shown to be both sensitive and specific. DNA from 50 of 226 (22%) isolates screened was identified as containing an integron by the screening PCR, and sequence data were obtained across the integron for 34 of 50 (68%) of these isolates. In an attempt to study the molecular epidemiology of antimicrobial resistance genes carried within integrons, a comparison of the types of gene cassettes carried by isolates from different patients was made. Adenyltransferase genes conferring resistance to streptomycin and spectinomycin were the predominant gene cassettes amplified in the study. Resistance to trimethoprim was also frequently found to be encoded within integrons. Furthermore, multiple bacterial isolates obtained from one patient over a 5-month period were all shown to carry an integron containing the same single adenyltransferase gene cassette, suggesting that these elements were relatively stable in this case. | 2001 | 11257011 |
| 5971 | 4 | 0.9996 | Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. In this study the feasibility of 50- and 60-mer oligonucleotides in microarray analysis for the detection and identification of antibiotic resistance genes in various Salmonella strains was assessed. The specificity of the designed oligonucleotides was evaluated, furthermore the optimal spotting concentration was determined. The oligonucleotide microarray was used to screen two sets of Salmonella strains for the presence of several antibiotic resistance genes. Set 1 consisted of strains with variant Salmonella Genomic Island 1 (SGI1) multidrug resistance (MDR) regions of which the antibiotic resistance profiles and genotypes were known. The second set contained strains of which initially only phenotypic data were available. The microarray results of the first set of Salmonella strains perfectly matched with the phenotypic and genotypic information. The microarray data of the second set were almost completely in concordance with the available phenotypic data. It was concluded that the microarray technique in combination with random primed genomic labeling and 50- or 60-mer oligonucleotides is a powerful tool for the detection of antibiotic resistance genes in bacteria. | 2005 | 15823391 |
| 5083 | 5 | 0.9996 | Multiplex Microarrays in 96-Well Plates Photoactivated with 4-Azidotetrafluorobenzaldehyde for the Identification and Quantification of β-Lactamase Genes and Their RNA Transcripts. Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde. Then, it was used to develop the technique of microarrays in the wells. It consists of the following steps: activating polystyrene, hybridizing the probes with biotinylated target DNA, and developing the result using a streptavidin-peroxidase conjugate with colorimetric detection. The first microarray was designed to identify 11 different gene types and 16 single-nucleotide polymorphisms (SNPs) of clinically relevant ESBLs and carbapenemases, which confer Gram-negative bacteria resistance to β-lactam antibiotics. The detection of bla genes in 65 clinical isolates of Enterobacteriaceae demonstrated the high sensitivity and reproducibility of the technique. The highly reproducible spot staining of colorimetric microarrays allowed us to design a second microarray that was intended to quantify four different types of bla mRNAs in order to ascertain their expressions. The combination of reliable performance, high throughput in standard 96-well plates, and inexpensive colorimetric detection makes the microarrays suitable for routine clinical application and for the study of multi-drug resistant bacteria. | 2023 | 38275665 |
| 5974 | 6 | 0.9996 | Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus. As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene. | 2010 | 21083822 |
| 5692 | 7 | 0.9996 | Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum beta-lactamases. Validation of the array with control strains demonstrated a 99% correlation between polymerase chain reaction and array results. There was also good correlation between phenotypic and genotypic results for a large panel of Escherichia coli and Salmonella isolates. Some differences were also seen in the number and type of resistance genes harboured by E. coli and Salmonella strains. The array provides an effective, fast and simple method for detection of resistance genes in clinical isolates suitable for use in diagnostic laboratories, which in future will help to understand the epidemiology of isolates and to detect gene linkage in bacterial populations. | 2008 | 18243668 |
| 5040 | 8 | 0.9996 | Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis. BACKGROUND: The emergence of multi-drug-resistant (MDR) micro-organisms prompted new interest in older antibiotics, such as colistin, that had been abandoned previously due to limited efficacy or high toxicity. Over the years, several chromosomal-encoded colistin resistance mechanisms have been described; more recently, 10 plasmid-mediated mobile colistin resistance (mcr) genes have been identified. Spread of these genes among MDR Gram-negative bacteria is a matter of serious concern; therefore, reliable and timely mcr detection is paramount. AIM: To design and validate a multiplex real-time polymerase chain reaction (PCR) assay for detection and differentiation of mcr genes. METHODS: All available mcr alleles were downloaded from the National Center for Biotechnology Information Reference Gene Catalogue, aligned with Clustal Omega and primers designed using Primer-BLAST. Real-time PCR monoplexes were optimized and validated using a panel of 120 characterized Gram-negative strains carrying a wide range of resistance genes, often in combination. Melt-curve analysis was used to confirm positive results. FINDINGS: In-silico analysis enabled the design of a 'screening' assay for detection of mcr-1/2/6, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8 and mcr-9/10, paired with an internal control assay to discount inhibition. A 'supplementary' assay was subsequently designed to differentiate mcr-1, mcr-2, mcr-6, mcr-9 and mcr-10. Expected results were obtained for all strains (100% sensitivity and specificity). Melt-curve analysis showed consistent melting temperature results. Inhibition was not observed. CONCLUSIONS: The assay is rapid and easy to perform, enabling unequivocal mcr detection and differentiation even when more than one variant is present. Adoption by clinical and veterinary microbiology laboratories would aid the surveillance of mcr genes amongst Gram-negative bacteria. | 2021 | 33485969 |
| 5088 | 9 | 0.9996 | A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 10(2) cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry. | 2017 | 29163387 |
| 5854 | 10 | 0.9996 | Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria. | 2010 | 20368404 |
| 5773 | 11 | 0.9996 | LBJMR medium: a new polyvalent culture medium for isolating and selecting vancomycin and colistin-resistant bacteria. BACKGROUND: Multi-drug resistant bacteria are a phenomenon which is on the increase around the world, particularly with the emergence of colistin-resistant Enterobacteriaceae and vancomycin-resistant enterococci strains. The recent discovery of a plasmid-mediated colistin resistance with the description of the transferable mcr-1 gene raised concerns about the need for an efficient detection method for these pathogens, to isolate infected patients as early as possible. The LBJMR medium was developed to screen for all polymyxin-resistant Gram-negative bacteria, including mcr-1 positive isolates, and vancomycin-resistant Gram-positive bacteria. RESULTS: The LBJMR medium was developed by adding colistin sulfate salt at a low concentration (4 μg/mL) and vancomycin (50 μg/mL), with glucose (7.5 g/L) as a fermentative substrate, to a Purple Agar Base (31 g/L). A total of 143 bacterial strains were used to evaluate this universal culture medium, and the sensitivity and specificity of detection were 100% for the growth of resistant strains. 68 stool samples were cultured on LBJMR, and both colistin-resistant Gram-negative and vancomycin-resistant Gram-positive strains were specifically detected. CONCLUSIONS: The LBJMR medium is a multipurpose selective medium which makes it possible to identify bacteria of interest from clinical samples and to isolate contaminated patients in hospital settings. This is a simple medium that could be easily used for screening in clinical microbiology laboratories. | 2017 | 29169321 |
| 2240 | 12 | 0.9996 | Evaluation of multiplex tandem PCR (MT-PCR) assays for the detection of bacterial resistance genes among Enterobacteriaceae in clinical urines. BACKGROUND: Increasing resistance drives empirical use of less potent and previously reserved antibiotics, including for urinary tract infections (UTIs). Molecular profiling, without culture, might better guide early therapy. OBJECTIVES: To explore the potential of AusDiagnostics multiplex tandem (MT) PCR UTI assays. METHODS: Two MT-PCR assays were developed successively, seeking 8 or 16 resistance genes. Amplification was tracked in real time, with melting temperatures used to confirm product identity. Assays were variously performed on: (i) extracted DNA; (ii) cultured bacteria; (iii) urine spiked with reference strains; and (iv) bacteria harvested from clinical urines. Results were compared with those from sequencing, real-time SybrGreen PCR or phenotypic susceptibility. RESULTS: Performance was similar irrespective of whether DNA, cultures or urines were used, with >90% sensitivity and specificity with respect to common β-lactamases, dfr genes and aminoglycoside resistance determinants except aadA1/A2/A3, for which carriage correlated poorly with streptomycin resistance. Fluoroquinolone-susceptible and -resistant Escherichia coli (but not other species) were distinguished by the melting temperatures of their gyrA PCR products. The time from urine to results was <3 h. CONCLUSIONS: The MT-PCR assays rapidly identified resistance genes from Gram-negative bacteria in urines as well as from cultivated bacteria. Used directly on urines, this assay has the potential to guide early therapy. | 2019 | 30476137 |
| 5042 | 13 | 0.9996 | Multiplex loop-mediated isothermal amplification (multi-LAMP) assay for rapid detection of mcr-1 to mcr-5 in colistin-resistant bacteria. Purpose: The discovery of the plasmid-mediated colistin resistance genes, mcr, revealed a mechanism of transmission of colistin resistance, which is a major, global public health concern especially among individuals infected with carbapenem-resistant Gram-negative bacteria. To monitor the spread and epidemiology of mcr genes, a convenient and reliable method to detect mcr genes in clinical isolates is needed, especially in the primary care institutions. This study aimed to establish a restriction endonuclease-based multiplex loop-mediated isothermal amplification (multi-LAMP) assay to detect mcr genes (mcr-1 to mcr-5) harbored by colistin-resistant bacteria. Methods: A triple-LAMP assay for mcr-1, mcr-3, and mcr-4 and a double-LAMP assay for mcr-2 and mcr-5 were established. The sensitivity and specificity of the LAMP reactions were determined via electrophoresis and visual detection. Results: The sensitivity of the LAMP assay was 10-fold greater than that of PCR, with high specificity among the screened primers. Specific mcr genes were distinguished in accordance with band numbers and the fragment length of the digested LAMP amplification products. Furthermore, the LAMP assay was confirmed as a rapid and reliable diagnostic technique upon application for clinical samples, and the results were consistent with those of conventional PCR assay. Conclusion: The multi-LAMP assay is a potentially promising method to detect mcr genes and will, if implemented, help prevent infections by drug-resistant bacteria in primary-care hospitals due to rapid and reliable surveillance. To our knowledge, this is the first study to report the application of LAMP to detect mcr-2 to mcr-5 genes and the first time that multi-LAMP has been applied to detect mcr genes. | 2019 | 31308708 |
| 5090 | 14 | 0.9996 | A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria. The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria. | 2024 | 39395725 |
| 5086 | 15 | 0.9995 | Detection of genetically modified microorganisms in soil using the most-probable-number method with multiplex PCR and DNA dot blot. The principal objective of this study was to detect genetically modified microorganisms (GMMs) that might be accidentally released into the environment from laboratories. Two methods [plate counting and most-probable-number (MPN)] coupled with either multiplex PCR or DNA dot blots were compared using genetically modified Escherichia coli, Pseudomonas putida, and Acinetobacter oleivorans harboring an antibiotic-resistance gene with additional gfp and lacZ genes as markers. Alignments of sequences collected from databases using the Perl scripting language (Perl API) and from denaturing gradient gel electrophoresis analysis revealed that the gfp, lacZ and antibiotic-resistance genes (kanamycin, tetracycline, and ampicillin) in GMMs differed from the counterpart genes in many sequenced genomes and in soil DNA. Thus, specific multiplex PCR primer sets for detection of plasmid-based gfp and lacZ antibiotic-resistance genes could be generated. In the plate counting method, many antibiotic-resistant bacteria from a soil microcosm grew as colonies on antibiotic-containing agar plates. The multiplex PCR verification of randomly selected antibiotic-resistant colonies with specific primers proved ineffective. The MPN-multiplex PCR method and antibiotic-resistant phenotype could be successfully used to detect GMMs, although this method is quite laborious. The MPN-DNA dot blot method screened more cells at a time in a microtiter plate containing the corresponding antibiotics, and was shown to be a more efficient method for the detection of GMMs in soil using specific probes in terms of labor and accuracy. | 2011 | 21810467 |
| 5091 | 16 | 0.9995 | Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. OBJECTIVES: Integrons are bacterial genetic elements that can capture and express genes contained in mobile cassettes. Integrons have been described worldwide in Gram-negative bacteria and are a marker of antibiotic resistance. We developed a specific and sensitive Taqman probe-based real-time PCR method with three different primer-probe pairs for simultaneous detection of the three main classes of integron. METHODS: Sensitivity was assessed by testing mixtures of the three targets (intI integrase genes of each integron class) ranging from 10 to 10(8) copies. Specificity was determined with a panel of integron-containing and integron-free control strains. The method was then applied to clinical samples. RESULTS: The PCR method was specific and had a sensitivity of 10(2) copies for all three genes, regardless of their respective quantities. The method was quantitative from 10(3) to 10(7) copies, and was able to detect integrons directly in biological samples. CONCLUSIONS: We have developed a rapid, quantitative, specific and sensitive method that could prove useful for initial screening of Gram-negative isolates, or clinical samples, for likely multidrug resistance. | 2010 | 20542899 |
| 2228 | 17 | 0.9995 | Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis. | 2019 | 31849899 |
| 5694 | 18 | 0.9995 | Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay. | 2016 | 26489938 |
| 5693 | 19 | 0.9995 | Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure. | 2013 | 23129055 |