Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
508101.0000Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. The effectiveness of recommended first-line therapies for Helicobacter pylori infections is decreasing due to the occurrence of resistance to metronidazole and/or clarithromycin. Quadruple therapies, which include tetracycline and a bismuth salt, are useful alternative regimens. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA genes (rrnA and rrnB) affecting nucleotides 926 to 928, are already emerging and can impair the efficacies of such second-line regimens. Here, we describe a novel real-time PCR for the detection of 16S rRNA gene mutations associated with tetracycline resistance. Our PCR method was able to distinguish between wild-type strains and resistant strains exhibiting single-, double, or triple-base-pair mutations. The method was applicable both to DNA extracted from pure cultures and to DNA extracted from fresh or frozen H. pylori-infected gastric biopsy samples. We therefore conclude that this real-time PCR is an excellent method for determination of H. pylori tetracycline resistance even when live bacteria are no longer available.200516048919
597710.9998Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available.201020401584
507520.9997Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.202439409516
508030.9997Rapid screening for antibiotic resistance elements on the RNA transcript, protein and enzymatic activity level. BACKGROUND: The emerging threat posed by antibiotic resistance has affected public health systems all over the world. Surveillance of resistant bacteria in clinical settings and identifying them in mixed cultures is of paramount importance and can contribute to the control of their spreading. Culture-independent monitoring approaches are highly desirable, since they yield results much faster than traditional susceptibility testing. However, many rapid molecular methods like PCR only detect the sole presence of a potential resistance gene, do not provide information regarding efficient transcription, expression and functionality and, in addition, cannot assign resistance genes to species level in mixed cultures. METHODS: By using plasmid-encoded TEM β-lactamase mediated ampicillin resistances as a proof of principle system, we (1) developed a fluorescence in situ hybridization-test (FISH) capable to detect the respective mRNAs, (2) implemented an immunofluorescence test to identify the corresponding proteins and (3) compared these two microscopic tests with an established colorimetric nitrocefin assay to assess the enzymatic activity. RESULTS: All three methods proved to be suitable for the testing of antibiotic resistance, but only FISH and immunofluorescence were able to differentiate between susceptible and resistant bacteria on the single cell level and can be combined with simultaneous species identification. CONCLUSIONS: Fluorescence in situ hybridization and immunofluorescence tests are promising techniques in susceptibility testing since they bridge the gap between the slow, but accurate and sound cultural methods and molecular detection methods like PCR with much less functional relevance.201627663856
467540.9997Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. ABSTRACT: In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L).202133320937
624850.9997Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. BACKGROUND: Clostridium difficile are gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15-35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. CONCLUSIONS/SIGNIFICANCE: This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described.201323349739
508260.9997A quantitative real-time PCR assay for the detection of tetR of Tn10 in Escherichia coli using SYBR Green and the Opticon. Bacteria of implant infections are extremely resistant to antibiotics. One reason for this antibiotic resistance are transposons; the well-known transposon Tn10, for example, mediates tetracycline resistance to Escherichia coli. Two genes of Tn10, tetA and tetR, are essential for the mechanism of resistance. These genes encode a drug-specific efflux protein and a tetracycline repressor protein, respectively. Tn10 is also widely used in molecular biology. For example, tTA, a recombinant derivate of tetR, has been utilised for a highly efficient gene regulation system in mammalian cells. We have examined E. coli isolates from implant infections for tetracycline resistance and for the presence of tetR. A real-time PCR assay was developed for detection of tetR with SybrGreen using the Opticon PCR machine of MJ Research. This method offers a quick, sensitive, efficient, and reliable approach to the detection and quantification of genes. Clinical isolates of E. coli were examined successfully for tetracycline resistance and for the presence of tetR. The real-time PCR is effective using a variety of templates including isolated E. coli DNA, pure colonies, or liquid culture sources. Using quantified standard DNA, this assay can accurately detect as few as 15 copies. Moreover, this assay has the ability to quantify the number of tetR genes in the presence of contaminating mammalian DNA. In conclusion, the tetR real-time PCR offers new methods for detection and quantification of tetracycline-resistant bacteria and tTA in transfected cell-lines or transgenic animals.200415165753
360070.9997Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.200415305923
473880.9997Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization.202538767682
462990.9997Screening and in silico characterization of prophages in Helicobacter pylori clinical strains. The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we developed a method to identify prophages in H. pylori genomes aiming at their future use in therapy. A polymerase chain reaction (PCR)-based technique tested five primer pairs on 74 clinical H. pylori strains. After the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. This study allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Overall, we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.202539368610
5840100.9997Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h.200919656662
4739110.9997Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. OBJECTIVES: Indirect resistance (IR), the ability of an antibiotic-resistant population of bacteria to protect a susceptible population, has been previously observed for β-lactamase-producing bacteria and associated with antimicrobial treatment failures. Here, we determined whether other resistance determinants could cause IR in the presence of five other classes of antibiotics. METHODS: A test was designed to detect IR and 14 antibiotic resistance genes were tested in the presence of 13 antibiotics from six classes. A bioassay was used to measure the ability of resistance-causing enzymes to decrease the concentration of active antibiotics in the medium. RESULTS: We confirmed IR in the presence of β-lactam antibiotics (ampicillin and mecillinam) when TEM-1A was expressed. We found that bacteria expressing antibiotic-modifying or -degrading enzymes Ere(A), Tet(X2) or CatA1 caused IR in the presence of macrolides (erythromycin and clarithromycin), tetracyclines (tetracycline and tigecycline) and chloramphenicol, respectively. IR was not observed with resistance determinants that did not modify or destroy antibiotics or with enzymes modifying aminoglycosides or degrading fosfomycin. IR was dependent on the resistance enzymes decreasing the concentration of active antibiotics in the medium, hence allowing nearby susceptible bacteria to resume growth once the antibiotic concentration fell below their MIC. CONCLUSIONS: IR was not limited to β-lactamase-producing bacteria, but was also caused by resistant bacteria carrying cytoplasmic antibiotic-modifying or -degrading enzymes that catalyse energy-consuming reactions requiring complex cellular cofactors. Our results suggest that IR is common and further emphasizes that coinfecting agents and the human microflora can have a negative impact during antimicrobial therapy.201626467993
3806120.9997Bioinformatic analysis reveals the association between bacterial morphology and antibiotic resistance using light microscopy with deep learning. Although it is well known that the morphology of Gram-negative rods changes on exposure to antibiotics, the morphology of antibiotic-resistant bacteria in the absence of antibiotics has not been widely investigated. Here, we studied the morphologies of 10 antibiotic-resistant strains of Escherichia coli and used bioinformatics tools to classify the resistant cells under light microscopy in the absence of antibiotics. The antibiotic-resistant strains showed differences in morphology from the sensitive parental strain, and the differences were most prominent in the quinolone-and β-lactam-resistant bacteria. A cluster analysis revealed increased proportions of fatter or shorter cells in the antibiotic-resistant strains. A correlation analysis of morphological features and gene expression suggested that genes related to energy metabolism and antibiotic resistance were highly correlated with the morphological characteristics of the resistant strains. Our newly proposed deep learning method for single-cell classification achieved a high level of performance in classifying quinolone-and β-lactam-resistant strains.202439364166
6266130.9997Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis.201223022568
5693140.9997Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.201323129055
3805150.9997De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Sensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in an Escherichia coli mutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level.201627431218
4497160.9997Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm.201931448060
5092170.9997Rapid detection of antibiotic resistance genes in lactic acid bacteria using PMMA-based microreactor arrays. The emergence of lactic acid bacteria (LABs) resistant to existing antimicrobial drugs is a growing health crisis. To decrease the overuse of antibiotics, molecular diagnostic systems that can rapidly determine the presence of antibiotic resistance (AR) genes in LABs from yogurt samples are needed. This paper describes a fully integrated, miniaturized plastic chip and closed-tube detection chemistry that performs multiplex nucleic acid amplification. High-throughput identification of AR genes was achieved through this approach, and six AR genes were analyzed simultaneously in < 2 h. This time-to-result included the time required for the extraction of DNA. The detection limit of the chip was 10(3) CFU mL(-1), which was consistent with that of tube LAMP. We detected and identified multiple DNAs, including streptomycin, tetracycline, and vancomycin resistance-associated genes, with complete concordance to the Kirby-Bauer disk diffusion method.Key Points• A miniaturized chip was presented, and multiplex nucleic acid amplification was performed.• The device can be integrated with LAMP for rapid detection of antibiotic resistance genes.• The approach had a high throughput of AR gene analysis in lactic acid bacteria.202032488313
4380180.9997Comparative genome analysis of ciprofloxacin-resistant Pseudomonas aeruginosa reveals genes within newly identified high variability regions associated with drug resistance development. The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development.201323808957
6247190.9997Molecular basis and evolutionary cost of a novel macrolides/lincosamides resistance phenotype in Staphylococcus haemolyticus. Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure.202337724875