Diagnostic microarray for human and animal bacterial diseases and their virulence and antimicrobial resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
507601.0000Diagnostic microarray for human and animal bacterial diseases and their virulence and antimicrobial resistance genes. Rapid diagnosis and treatment of disease is often based on the identification and characterization of causative agents derived from phenotypic characteristics. Current methods can be laborious and time-consuming, often requiring many skilled personnel and a large amount of lab space. The objective of our study was to develop a spotted microarray for rapid identification and characterization of bacterial pathogens and their antimicrobial resistance genes. Our spotted microarray consists of 489 70mer probes that detect 40 bacterial pathogens of medical, veterinary and zoonotic importance (including 15 NIAID Category A, B and C pathogens); associated genes that encode resistance for antimicrobial and metal resistance; and DNA elements that are important for horizontal gene transfer among bacteria. High specificity and reliability of the microarray was achieved for bacterial pathogens of animal and human importance by validating MDR pathogenic bacteria as pure cultures or by following their inoculation in complex and highly organic sample matrices, such as soil and manure.201020035807
507710.9998Development of a new integrated diagnostic test for identification and characterization of pathogens. Animal diseases directly cause multi-million dollar losses world-wide. Therefore a rapid, highly specific, cost-effective diagnostic test for detecting a large set of bacterial virulence and antimicrobial resistance genes simultaneously is necessary. Hence, our group, the BCBG (Bacterial Chips Bacterial Genes) group, proposes developing a powerful molecular tool (DNA microarray) to detect a broad range of infectious agents, their endogenous main virulence factors and antibiotic resistance genes simultaneously. Effectively, a 70-mer oligonucleotide microarray capable of detecting the presence or absence of 169 Escherichia coli virulence genes or virulence marker genes as well as their variants, in addition to 30 principal antimicrobial resistance genes previously characterized in E. coli strains was developed by our group. This microarray was validated with a large collection of well characterized pathogenic and reference E. coli strains. Moreover, we are developing a new powerful clinical diagnostic microarray tool, to identify pathogenic bacteria of veterinary interest. The commercialization of this assay would allow same day diagnosis of infectious agents and their antibiotic resistance resulting in early treatment. In addition, this technology is also applicable to microbial quality control of food and water.200617058497
463220.9998Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux. BACKGROUND: Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. RESULTS: The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). CONCLUSION: The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.200818844996
417830.9998Efficacy and food safety considerations of poultry competitive exclusion products. Competitive exclusion (CE) products are anaerobic cultures of bacteria that are applied to poultry hatchlings to establish a protective enteric microbiota that excludes intestinal colonization by human food-borne pathogens. For safety of the poultry flock and human consumers, the identities of bacteria in CE products need to be known. A CE product is a culture of intestinal contents from adult chickens. It may be microbiologically defined by analysis of bacteria isolated from the culture, but many bacteria are hard to reliably isolate, identify, and characterize with conventional techniques. Sequence analysis of 16S ribosomal RNA (rRNA) genes may be more reliable than conventional techniques to identify CE bacteria. Bacteria in CE products may contain antimicrobial drug resistance and virulence mechanisms that could be transferred to the enteric bacteria of the food animal and to the human consumer. Detection methods for specific antimicrobial drug resistance and virulence genes and the integrase genes of conjugative transposons, mostly utilizing PCR technology, are being developed that can be applied to assess these risks in CE bacteria. With improvements in efficacy, bacterial identification, and detection and control of the possible risks of gene transfer, CE product technology can be made a more effective food safety tool.200617039457
494140.9998BacCapSeq: a Platform for Diagnosis and Characterization of Bacterial Infections. We report a platform that increases the sensitivity of high-throughput sequencing for detection and characterization of bacteria, virulence determinants, and antimicrobial resistance (AMR) genes. The system uses a probe set comprised of 4.2 million oligonucleotides based on the Pathosystems Resource Integration Center (PATRIC) database, the Comprehensive Antibiotic Resistance Database (CARD), and the Virulence Factor Database (VFDB), representing 307 bacterial species that include all known human-pathogenic species, known antimicrobial resistance genes, and known virulence factors, respectively. The use of bacterial capture sequencing (BacCapSeq) resulted in an up to 1,000-fold increase in bacterial reads from blood samples and lowered the limit of detection by 1 to 2 orders of magnitude compared to conventional unbiased high-throughput sequencing, down to a level comparable to that of agent-specific real-time PCR with as few as 5 million total reads generated per sample. It detected not only the presence of AMR genes but also biomarkers for AMR that included both constitutive and differentially expressed transcripts.IMPORTANCE BacCapSeq is a method for differential diagnosis of bacterial infections and defining antimicrobial sensitivity profiles that has the potential to reduce morbidity and mortality, health care costs, and the inappropriate use of antibiotics that contributes to the development of antimicrobial resistance.201830352937
507550.9998Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.202439409516
462860.9998Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage-resistant strains that can be overcome by the analysis of metadata provided by whole-genome sequencing. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strains belonging to the ST-2 clonal complex during a decade (Ab2000 vs. 2010): 9 from 2000 to 9 from 2010. The presence of genes putatively associated with phage resistance was detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defense systems but with unknown function, and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands in the 2000 strains and 32% in the 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems. A moderately higher presence of these genes in the strains of 2010 in comparison with those of 2000 was found, especially those related to the restriction-modification system and CRISPR-Cas system. The presence of these genes in genomic islands at a higher rate in the strains of 2010 compared with those of 2000 was also detected. Whole-genome sequencing and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in possible phage therapy.202135250902
462970.9998Screening and in silico characterization of prophages in Helicobacter pylori clinical strains. The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we developed a method to identify prophages in H. pylori genomes aiming at their future use in therapy. A polymerase chain reaction (PCR)-based technique tested five primer pairs on 74 clinical H. pylori strains. After the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. This study allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Overall, we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.202539368610
462380.9998Capturing the Resistome: a Targeted Capture Method To Reveal Antibiotic Resistance Determinants in Metagenomes. Identification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Database, we designed a set of 37,826 probes to specifically target over 2,000 nucleotide sequences associated with antibiotic resistance in clinically relevant bacteria. Testing of this probe set on DNA libraries generated from multidrug-resistant bacteria to selectively capture resistance genes reproducibly produced higher numbers of reads on target at a greater length of coverage than shotgun sequencing. We also identified additional resistance gene sequences from human gut microbiome samples that sequencing alone was not able to detect. Our method to capture the resistome enables a sensitive means of gene detection in diverse environments where genes encoding antibiotic resistance represent less than 0.1% of the metagenome.201931611361
463190.9998Genome Analysis of an Enterococcal Prophage, Entfac.MY. BACKGROUND: Bacteriophages are bacterial parasites. Unlike lytic bacteriophages, lysogenic bacteriophages do not multiply immediately after entering the host cells and may integrate their genomes into the bacterial genomes as prophages. Prophages can include various phenotypic and genotypic effects on the host bacteria. Enterococcus spp. are Gram-positive bacteria that cause infections in humans and animals. In recent decades, these bacteria have become resistant to various antimicrobials, including vancomycin. The aim of this study was to analyze genome of an enterococcal prophage. METHODS: In this study, Enterococcus faecium EntfacYE was isolated from biological samples and its genome was analyzed using next-generation sequencing method. RESULTS: Overall, 254 prophage genes were identified in the bacterial genome. The prophage included 39 housekeeping, 41 replication and regulation, 80 structural and packaging, and 48 lysis genes. Moreover, 46 genes with unknown functions were identified. All genes were annotated in DNA Data Bank of Japan. CONCLUSION: In general, most prophage genes were linked to packaging and structure (31.5%) gene group. However, genes with unknown functions included a high proportion (18.11%), which indicated necessity of further analyses. Genomic analysis of the prophages can be effective in better understanding of their roles in development of bacterial resistance to antibiotics. Moreover, identification and study of prophages can help researchers develop genetic engineering tools and novel infection therapies.202236061127
5079100.9998Development of a Rapid, Culture-Free, Universal Microbial Identification System Using Internal Transcribed Spacer Targeting Primers. The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes. To overcome the deficits of culture-based methods, we have developed a rapid universal bacterial identification system. The platform uses a unique universal polymerase chain reaction primer set that targets the internal transcribed spacer regions between conserved bacterial genes, creating a distinguishable amplicon signature for every bacterial species. Bioinformatic simulation demonstrates that nearly every bacteria in a set of 45 commonly isolated pathogenic species can be uniquely identified using this approach. We experimentally confirmed these predictions on a representative set of pathogenic bacterial species. We further showed that the system can determine the corresponding concentration of each pathogen. Finally, we validated performance in clinical urinary tract infection samples.202539503259
4627110.9998Antibiotic resistance mechanisms of Myroides sp. Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria.201626984839
4179120.9998Epidemiology of Antimicrobial Resistance Genes in Streptococcus agalactiae Sequences from a Public Database in a One Health Perspective. Streptococcus agalactiae is a well-known pathogen in humans and food-producing animals. Therefore, this bacterium is a paradigmatic example of a pathogen to be controlled by a One Health approach. Indeed, the zoonotic and reverse-zoonotic potential of the bacteria, the prevalence of Group B Streptococci (GBS) diseases in both human and animal domains, and the threatening global situation on GBS antibiotic resistance make these bacteria an important target for control programs. An epidemiological analysis using a public database containing sequences of S. agalactiae from all over the world was conducted to evaluate the frequency and evolution of antibiotic resistance genes in those isolates. The database we considered (NCBI pathogen detection isolate browser-NPDIB) is maintained on a voluntary basis. Therefore, it does not follow strict epidemiological criteria. However, it may be considered representative of the bacterial population related to human diseases. The results showed that the number of reported sequences increased largely in the last four years, and about 50% are of European origin. The frequency data and the cluster analysis showed that the AMR genes increased in frequency in recent years and suggest the importance of verifying the application of prudent protocols for antimicrobials in areas with an increasing frequency of GBS infections both in human and veterinary medicine.202236140016
4630130.9998Genome Analysis of the Enterococcus faecium Entfac.YE Prophage. BACKGROUND: Bacteriophages are viruses that infect bacteria. Bacteriophages are widely distributed in various environments. The prevalence of bacteriophages in water sources, especially wastewaters, is naturally high. These viruses affect evolution of most bacterial species. Bacteriophages are able to integrate their genomes into the chromosomes of their hosts as prophages and hence transfer resistance genes to the bacterial genomes. Enterococci are commensal bacteria that show high resistance to common antibiotics. For example, prevalence of vancomycin-resistant enterococci has increased within the last decades. METHODS: Enterococcal isolates were isolated from clinical samples and morphological, phenotypical, biochemical, and molecular methods were used to identify and confirm their identity. Bacteriophages extracted from water sources were then applied to isolated Enterococcus faecium (E. faecium). In the next step, the bacterial genome was completely sequenced and the existing prophage genome in the bacterial genome was analyzed. RESULTS: In this study, E. faecium EntfacYE was isolated from a clinical sample. The EntfacYE genome was analyzed and 88 prophage genes were identified. The prophage content included four housekeeping genes, 29 genes in the group of genes related to replication and regulation, 25 genes in the group of genes related to structure and packaging, and four genes belonging to the group of genes associated with lysis. Moreover, 26 genes were identified with unknown functions. CONCLUSION: In conclusion, genome analysis of prophages can lead to a better understanding of their roles in the rapid evolution of bacteria.202235509366
5694140.9998Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.201626489938
5111150.9998Antimicrobial Resistance Prediction for Gram-Negative Bacteria via Game Theory-Based Feature Evaluation. The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp.201931597945
4181160.9998The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics.200616956128
4640170.9998Genome analysis of probiotic bacteria for antibiotic resistance genes. To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.202234989942
4626180.9998Prophages Present in Acinetobacter pittii Influence Bacterial Virulence, Antibiotic Resistance, and Genomic Rearrangements. Introduction: Antibiotic resistance and virulence are common among bacterial populations, posing a global clinical challenge. The bacterial species Acinetobacter pittii, an infectious agent in clinical environments, has shown increasing rates of antibiotic resistance. Viruses that integrate as prophages into A. pittii could be a potential cause of this pathogenicity, as they often contain antibiotic resistance or virulence factor gene sequences. Methods: In this study, we analyzed 25 A. pittii strains for potential prophages. Using virulence factor databases, we identified many common and virulent prophages in A. pittii. Results: The analysis also included a specific catalogue of the virulence factors and antibiotic resistance genes contributed by A. pittii prophages. Finally, our results illustrate multiple similarities between A. pittii and its bacterial relatives with regard to prophage integration sites and prevalence. Discussion: These findings provide a broader insight into prophage behavior that can be applied to future studies on similar species in the Acinetobacter calcoaceticus-baumannii complex.202236161193
3928190.9997Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Resistance to antibiotics is a major public health problem which might culminate in outbreaks caused by pathogenic bacteria untreatable by known antibiotics. Most of the genes conferring resistance are acquired horizontally from already resistant commensal or environmental bacteria. Food contamination by resistant bacteria might be a significant source of resistance genes for human bacteria but has never been precisely assessed, nor is it known whether organic products differ in this respect from conventionally produced products. We showed here, on a large year-long constructed sample set containing 399 products that, irrespective of their mode of production, raw fruits and vegetables are heavily contaminated by Gram-negative bacteria (GNB) resistant to multiple antibiotics. Most of these bacteria originate in the soil and environment. We focused on non-oxidative GNB resistant to third-generation cephalosporins, because of their potential impact on human health. Among them, species potentially pathogenic for immunocompetent hosts were rare. Of the products tested, 13% carried bacteria producing extended-spectrum beta-lactamases, all identified as Rahnella sp. which grouped into two phylotypes and all carrying the bla(RAHN) gene. Thus, both organic and conventional fruits and vegetables may constitute significant sources of resistant bacteria and of resistance genes.201019919536