Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
506801.0000Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
503810.9992Simple and quick detection of extended-spectrum β-lactamase and carbapenemase-encoding genes using isothermal nucleic acid amplification techniques. The spread of plasmid-mediated antibiotic-resistant bacteria must be controlled; to this end, developing kits for simple and rapid detection in food and clinical settings is desirable. This review describes the detection of antibiotic resistance genes in extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing bacteria. Loop-mediated isothermal amplification (LAMP), a technique developed in Japan, is a useful diffusion amplification method that does not require equipment like thermal cyclers, and amplifies the target gene in 30 min at about 65℃. Although most reports targeting ESBL and carbapenemase genes are intended for clinical use, environmental and food samples have also been targeted. Recombinase polymerase amplification (RPA) has recently been developed; in RPA, the reaction proceeds under the human skin with reaction conditions of 30 min at 37℃. Detection of ESBL and carbapenemase-encoding genes in food and clinical samples using RPA has been reported in limited studies. However, research on RPA has just begun, and further development is expected.202338233166
582620.9991Rapid and accurate sepsis diagnostics via a novel probe-based multiplex real-time PCR system. Sepsis is a critical clinical emergency that requires prompt diagnosis and intervention. Its prevalence has increased due to the aging population and increased antibiotic resistance. Early identification and the use of innovative technologies are crucial for improving patient outcomes. Modern methodologies are needed to minimize the turnaround time for diagnosis and improve outcomes. Rapid diagnostic tests and multiplex PCR are effective but have limitations in identifying a range of pathogens and target genes. Our study evaluated two novel probe-based multiplex real-time PCR systems: the SEPSI ID and SEPSI DR panels. These systems can quickly identify bacterial and fungal pathogens, alongside antibiotic resistance genes. The assays cover 29 microorganisms (gram-negative bacteria, gram-positive bacteria, yeast, and mold species), alongside 23 resistance genes and four virulence factors. A streamlined workflow uses 2 µL of broth from positive blood cultures (BCs) without nucleic acid extraction and provides results in approximately 1 h. We present the results from an evaluation of 228 BCs and 22 isolates previously characterized by whole-genome sequencing. In comparison to the reference methods, the SEPSI ID panel demonstrated a sensitivity of 96.88%, a specificity of 100%, and a PPV of 100%, whereas the SEPSI DR panel showed a sensitivity of 97.8%, a PPV of 89.7%, and a specificity of 96.7%. Both panels also identified additional pathogens and resistance-related targets not detected by conventional methods. This assay shows promise for rapidly and accurately diagnosing sepsis. Future studies should validate its performance in various clinical settings to enhance sepsis management and improve patient outcomes.IMPORTANCEWe present a new diagnostic method that enables the quick and precise identification of pathogens and resistance genes from positive blood cultures, eliminating the need for nucleic acid extraction. This technique can also be used on fresh pathogen cultures. It has the potential to greatly improve treatment protocols, leading to better patient outcomes, more responsible antibiotic use, and more efficient management of healthcare resources.202541025980
502030.9991Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Emerging β-lactamase-producing-bacteria (ESBL, AmpC and carbapenemases) have become a serious problem in our community due to their startling spread worldwide and their ability to cause infections which are difficult to treat. Diagnosis of these β-lactamases is of clinical and epidemiological interest. Over the past 10 years, several methods have been developed aiming to rapidly detect these emerging enzymes, thus preventing their rapid spread. In this review, we describe the range of screening and detection methods (phenotypic, molecular and other) for detecting these β-lactamases but also whole genome sequencing as a tool for detecting the genes encoding these enzymes.201526162631
488540.9991A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance.202540725449
974350.9991Simultaneous Detection of Antibiotic Resistance Genes on Paper-Based Chip Using [Ru(phen)(2)dppz](2+) Turn-on Fluorescence Probe. Antibiotic resistance, the ability of some bacteria to resist antibiotic drugs, has been a major global health burden due to the extensive use of antibiotic agents. Antibiotic resistance is encoded via particular genes; hence the specific detection of these genes is necessary for diagnosis and treatment of antibiotic resistant cases. Conventional methods for monitoring antibiotic resistance genes require the sample to be transported to a central laboratory for tedious and sophisticated tests, which is grueling and time-consuming. We developed a paper-based chip, integrated with loop-mediated isothermal amplification (LAMP) and the "light switch" molecule [Ru(phen)(2)dppz](2+), to conduct turn-on fluorescent detection of antibiotic resistance genes. In this assay, the amplification reagents can be embedded into test spots of the chip in advance, thus simplifying the detection procedure. [Ru(phen)(2)dppz](2+) was applied to intercalate into amplicons for product analysis, enabling this assay to be operated in a wash-free format. The paper-based detection device exhibited a limit of detection (LOD) as few as 100 copies for antibiotic resistance genes. Meanwhile, it could detect antibiotic resistance genes from various bacteria. Noticeably, the approach can be applied to other genes besides antibiotic resistance genes by simply changing the LAMP primers. Therefore, this paper-based chip has the potential for point-of-care (POC) applications to detect various gene samples, especially in resource-limited conditions.201829323478
485460.9990Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Carbapenem resistance in gram-negative bacteria has caused a global epidemic that continues to grow. Although carbapenemase-producing Enterobacteriaceae have received the most attention because resistance was first reported in these pathogens in the early 1990s, there is increased awareness of the impact of carbapenem-resistant nonfermenting gram-negative bacteria, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Moreover, evaluating the problem of carbapenem resistance requires the consideration of both carbapenemase-producing bacteria as well as bacteria with other carbapenem resistance mechanisms. Advances in rapid diagnostic tests to improve the detection of carbapenem resistance and the use of large, population-based datasets to capture a greater proportion of carbapenem-resistant organisms can help us gain a better understanding of this urgent threat and enable physicians to select the most appropriate antibiotics.201931724045
503170.9990Rapid Tracing of Resistance Plasmids in a Nosocomial Outbreak Using Optical DNA Mapping. Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance.201627627201
582780.9990Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.202134528911
582990.9990Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.202133970612
2510100.9990Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.202134943524
5835110.9990Rapid and Ultrasensitive Detection of Mutations and Genes Relevant to Antimicrobial Resistance in Bacteria. The worldwide emergence of multidrug-resistant (MDR) bacteria is associated with significant morbidity, mortality, and healthcare costs. Rapid and accurate diagnostic methods to detect antibiotic resistance are critical for antibiotic stewardship and infection control measurements. Here a cantilever nanosensor-based diagnostic assay is shown to detect single nucleotide polymorphisms (SNPs) and genes associated with antibiotic resistance in Gram negative (Pseudomonas aeruginosa) and positive (Enterococcus faecium) bacteria, representing frequent causes for MDR infections. Highly specific RNA capture probes for SNPs (ampR(D135G) or ampR(G154R) ) or resistance genes (vanA, vanB, and vanD) allow to detect the binding of bacterial RNA within less than 5 min. Serial dilutions of bacterial RNA indicate an unprecedented sensitivity of 10 fg µL(-1) total RNA corresponding to less than ten bacterial cells for SNPs and 1 fg µL(-1) total RNA for vanD detection equivalent to single bacterial cell sensitivity.202133552553
4759120.9990Recent advances in rapid antimicrobial susceptibility testing systems. INTRODUCTION: Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED: Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION: AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as β-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods.202133926351
5078130.9989A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy. Antimicrobial resistance (AMR) is a fast-growing threat to global health. The genes conferring AMR to bacteria are often located on plasmids, circular extrachromosomal DNA molecules that can be transferred between bacterial strains and species. Therefore, effective methods to characterize bacterial plasmids and detect the presence of resistance genes can assist in managing AMR, for example, during outbreaks in hospitals. However, existing methods for plasmid analysis either provide limited information or are expensive and challenging to implement in low-resource settings. Herein, we present a simple assay based on CRISPR/Cas9 excision and DNA combing to detect antimicrobial resistance genes on bacterial plasmids. Cas9 recognizes the gene of interest and makes a double-stranded DNA cut, causing the circular plasmid to linearize. The change in plasmid configuration from circular to linear, and hence the presence of the AMR gene, is detected by stretching the plasmids on a glass surface and visualizing by fluorescence microscopy. This single-molecule imaging based assay is inexpensive, fast, and in addition to detecting the presence of AMR genes, it provides detailed information on the number and size of plasmids in the sample. We demonstrate the detection of several β-lactamase-encoding genes on plasmids isolated from clinical samples. Furthermore, we demonstrate that the assay can be performed using standard microbiology and clinical laboratory equipment, making it suitable for low-resource settings.202235660772
5689140.9989A CRISPR/Cas12a-Based System for Sensitive Detection of Antimicrobial-Resistant Genes in Carbapenem-Resistant Enterobacterales. Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-β-lactamase (NDM) are particularly concerning due to their resistance to most β-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (bla(NDM)) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry bla(NDM) and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of bla(NDM)-(1) carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 10(0) CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.202438667187
2497150.9989Rapid Simultaneous Detection of the Clinically Relevant Carbapenemase Resistance Genes blaKPC, blaOXA48, blaVIM and blaNDM with the Newly Developed Ready-to-Use qPCR CarbaScan LyoBead. Antibiotic resistance, in particular the dissemination of carbapenemase-producing organisms, poses a significant threat to global healthcare. This study introduces the qPCR CarbaScan LyoBead assay, a robust, accurate, and efficient tool for detecting key carbapenemase genes, including blaKPC, blaNDM, blaOXA-48, and blaVIM. The assay utilizes lyophilized beads, a technological advancement that enhances stability, simplifies handling, and eliminates the need for refrigeration. This feature renders it particularly well-suited for point-of-care diagnostics and resource-limited settings. The assay's capacity to detect carbapenemase genes directly from bacterial colonies without the need for extensive sample preparation has been demonstrated to streamline workflows and enable rapid diagnostic results. The assay demonstrated 100% specificity and sensitivity across a diverse range of bacterial strains, including multiple allelic variants of target genes, facilitating precise identification of resistance mechanisms. Bacterial strains of the species Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae and Pseudomonas aeruginosa were utilized as reference material for assay development (n = 9) and validation (n = 28). It is notable that the assay's long shelf life and minimal operational complexity further enhance its utility for large-scale implementation in healthcare, food safety, and environmental monitoring. The findings emphasize the necessity of continuous surveillance and the implementation of rapid diagnostic methods for the effective detection of resistance genes. Furthermore, the assay's potential applications in other fields, such as toxin-antitoxin system research and monitoring of resistant bacteria in the community, highlight its versatility. In conclusion, the qPCR CarbaScan LyoBead assay is a valuable tool that can contribute to the urgent need to combat antibiotic resistance and improve global public health outcomes.202539940986
5077160.9989Development of a new integrated diagnostic test for identification and characterization of pathogens. Animal diseases directly cause multi-million dollar losses world-wide. Therefore a rapid, highly specific, cost-effective diagnostic test for detecting a large set of bacterial virulence and antimicrobial resistance genes simultaneously is necessary. Hence, our group, the BCBG (Bacterial Chips Bacterial Genes) group, proposes developing a powerful molecular tool (DNA microarray) to detect a broad range of infectious agents, their endogenous main virulence factors and antibiotic resistance genes simultaneously. Effectively, a 70-mer oligonucleotide microarray capable of detecting the presence or absence of 169 Escherichia coli virulence genes or virulence marker genes as well as their variants, in addition to 30 principal antimicrobial resistance genes previously characterized in E. coli strains was developed by our group. This microarray was validated with a large collection of well characterized pathogenic and reference E. coli strains. Moreover, we are developing a new powerful clinical diagnostic microarray tool, to identify pathogenic bacteria of veterinary interest. The commercialization of this assay would allow same day diagnosis of infectious agents and their antibiotic resistance resulting in early treatment. In addition, this technology is also applicable to microbial quality control of food and water.200617058497
5073170.9989Parallel Detection of the Unamplified Carbapenem Resistance Genes bla(NDM-1) and bla(OXA-1) Using a Plasmonic Nano-Biosensor with a Field-Portable DNA Extraction Method. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in agricultural and clinical settings. The challenge is exacerbated by the lack of rapid surveillance for resistant bacteria in clinical, environmental, and food supply settings. The increasing resistance to carbapenems, an important sub-class of beta-lactam antibiotics, is a major concern in the healthcare community. Carbapenem resistance (CR) has been found in the environment and food supply chain, where it has the potential to spread to pathogens, animals, and humans through direct or indirect contact. Rapid detection for preventative and control measures should be developed. This study utilized a gold nanoparticle-based plasmonic biosensor for the parallel detection of the CR genes bla(NDM-1) and bla(OXA-1). To explore the field portability, DNA was extracted using two methods: a commercial extraction kit and a boiling method. The results were compared between the two methods using a spectrophotometer and a cellphone application for RGB values to quantify the visual results. The results showed that the boiling method of extraction was more effective than extraction with a commercial kit for this analysis. The parallel detection of unamplified genes extracted via the boiling method is novel. When combined with other portable testing equipment, the approach has the potential to be an inexpensive, rapid, and simple on-site CR gene detection protocol.202539997014
2503180.9989Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test. BACKGROUND: Polymyxins are currently considered a last-resort treatment for infections caused by MDR Gram-negative bacteria. Recently, the emergence of carbapenemase-producing Enterobacteriaceae has accelerated the use of polymyxins in the clinic, resulting in an increase in polymyxin-resistant bacteria. Polymyxin resistance arises through modification of lipid A, such as the addition of phosphoethanolamine (pETN). The underlying mechanisms involve numerous chromosome-encoded genes or, more worryingly, a plasmid-encoded pETN transferase named MCR. Currently, detection of polymyxin resistance is difficult and time consuming. OBJECTIVES: To develop a rapid diagnostic test that can identify polymyxin resistance and at the same time differentiate between chromosome- and plasmid-encoded resistances. METHODS: We developed a MALDI-TOF MS-based method, named the MALDIxin test, which allows the detection of polymyxin resistance-related modifications to lipid A (i.e. pETN addition), on intact bacteria, in <15 min. RESULTS: Using a characterized collection of polymyxin-susceptible and -resistant Escherichia coli, we demonstrated that our method is able to identify polymyxin-resistant isolates in 15 min whilst simultaneously discriminating between chromosome- and plasmid-encoded resistance. We validated the MALDIxin test on different media, using fresh and aged colonies and show that it successfully detects all MCR-1 producers in a blindly analysed set of carbapenemase-producing E. coli strains. CONCLUSIONS: The MALDIxin test is an accurate, rapid, cost-effective and scalable method that represents a major advance in the diagnosis of polymyxin resistance by directly assessing lipid A modifications in intact bacteria.201830184212
4853190.9989Success and Challenges Associated with Large-Scale Collaborative Surveillance for Carbapenemase Genes in Gram-Negative Bacteria. The emergence and spread of antimicrobial resistance, especially in Gram-negative bacteria, has led to significant morbidity and increased cost of health care. Large surveillance studies such as the one performed by the Antibiotic Resistance Laboratory Network are immensely valuable in understanding the scope of resistance mechanisms, especially among carbapenemase-producing Gram-negative bacteria. However, the routine laboratory detection of carbapenemases in these bacteria remains challenging and requires further optimization.202234930024