Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
50501.0000Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. Under favorable conditions, the peanut plant demonstrates appreciable resistance to fungal invasion by producing and accumulating phytoalexins, antimicrobial stilbenoids. This mechanism for resistance is little understood, yet it is crucial for breeding and genetically modifying peanut plants to develop new cultivars with fungal resistance. The dynamics of phytoalexin production in peanut seeds and embryos challenged by selected important fungi and bacteria was investigated. Different biotic agents selectively elicited production of major peanut stilbenoids, resveratrol, arachidin-1, arachidin-3, and SB-1. Aspergillis species, compared to other biotic agents, were more potent elicitors of stilbenoids. Embryos demonstrated significantly higher production of stilbenoids compared to cotyledons and may serve as a convenient source of genetic material in isolating genes for peanut plant defense enhancement.201323387286
879310.9978Enhanced Phytopathogen Biofilm Control in the Soybean Phyllosphere by the Phoresy of Bacteriophages Hitchhiking on Biocontrol Bacteria. Phage-based biocontrol has shown notable advantages in protecting plants against pathogenic bacteria in agricultural settings compared to chemical-based bactericides. However, the efficiency and scope of phage biocontrol of pathogenic bacteria are limited by the intrinsic properties of phages. Here, we investigated pathogen biofilm eradication in the phyllosphere using the phoresy system of hitchhiking phages onto carrier biocontrol bacteria. The phoresy system efficiently removed the pathogen biofilm in the soybean phyllosphere, reducing the total biomass by 58% and phytopathogens by 82% compared to the untreated control. Biofilm eradication tests demonstrated a significant combined beneficial effect (Bliss independence model, CI < 1) as phages improved carrier bacteria colonization by 1.2-fold and carrier bacteria facilitated phage infection by 1.4-fold. Transcriptomic analysis showed that phoresy significantly enhanced motility (e.g., fliC and pilD genes) and energy metabolism (e.g., pgm and pgk genes) of carrier bacteria and suppressed the defense system (e.g., MSH3 and FLS2 genes) and energy metabolism (e.g., petB and petC genes) of pathogens. Metabolomics analysis revealed that the phoresy system stimulated the secretion of beneficial metabolites (e.g., flavonoid and tropane alkaloid) that could enhance stress response and phyllosphere protection in soybeans. Overall, the phoresy of phages hitchhiking on biocontrol bacteria offers a novel and effective strategy for phyllosphere microbiome manipulation and bacterial disease control.202540315344
825020.9976Research Progress in the Mechanisms of Resistance to Biotic Stress in Sweet Potato. Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important food, feed, industrial raw materials, and new energy crops, and is widely cultivated around the world. China is the largest sweet potato producer in the world, and the sweet potato industry plays an important role in China's agriculture. During the growth of sweet potato, it is often affected by biotic stresses, such as fungi, nematodes, insects, viruses, and bacteria. These stressors are widespread worldwide and have severely restricted the production of sweet potato. In recent years, with the rapid development and maturity of biotechnology, an increasing number of stress-related genes have been introduced into sweet potato, which improves its quality and resistance of sweet potato. This paper summarizes the discovery of biological stress-related genes in sweet potato and the related mechanisms of stress resistance from the perspectives of genomics analysis, transcriptomics analysis, genetic engineering, and physiological and biochemical indicators. The mechanisms of stress resistance provide a reference for analyzing the molecular breeding of disease resistance mechanisms and biotic stress resistance in sweet potato.202338003049
825830.9976Elevating crop disease resistance with cloned genes. Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO₂ emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree.201424535396
825440.9976Transgenic Improvement for Biotic Resistance of Crops. Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.202236430848
824650.9975From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding.202235446562
863860.9975Enhancing phytoremediation through the use of transgenics and endophytes. In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants were overcome, resulting in increased removal of these chemicals. Overexpression of mammalian genes encoding cytochrome P450s led to increased metabolism and removal of a variety of organic pollutants and herbicides. Genes involved in the uptake or detoxification of metal pollutants were used to enhance phytoremediation of this important class of pollutants. Transgenic plants containing specific bacterial genes converted mercury and selenium to less toxic forms. In addition to these transgenic approaches, the use of microbes that live within plants, termed endophytes, also led to improved tolerance to normally phytotoxic chemicals and increased removal of the pollutants. Bacteria that degraded a herbicide imparted resistance to the herbicide when inoculated into plants. In another study, plants harboring bacteria capable of degrading toluene were more tolerant to normally phytotoxic concentrations of the chemical, and transpired less of it into the atmosphere. This review examines the recent advances in enhancing phytoremediation through transgenic plant research and through the use of symbiotic endophytic microorganisms within plant tissues.200819086174
824570.9975Plant Elite Squad: First Defense Line and Resistance Genes - Identification, Diversity and Functional Roles. Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.201727455974
824480.9975Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.201931065492
918090.9975Novel genes for disease-resistance breeding. Plant disease control is entering an exciting period during which transgenic plants showing improved resistance to pathogenic viruses, bacteria, fungi and insects are being developed. This review summarizes the first successful attempts to engineer fungal resistance in crops, and highlights two promising approaches. Biotechnology provides the promise of new integrated disease management strategies that combine modern fungicides and transgenic crops to provide effective disease control for modern agriculture.200010712959
8240100.9974β-glucan-induced disease resistance in plants: A review. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.202337742892
9198110.9974Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? One of the recent exciting developments in the research area of plant-microbe interactions is a breakthrough in understanding part of the initial signalling between avirulent Gram-negative bacteria and resistant plants. For resistance to occur, both interacting organisms need to express matching genes, the plant resistance gene and the bacterial avirulence gene. The biochemical function of bacterial avirulence genes and the nature of the signal molecules recognized by the plant have been a mystery for a long time. Recently, several laboratories have shown that bacterial avirulence proteins function as elicitors that are perceived within the plant cell.19979263447
9208120.9974The use of bacterial genes encoding herbicide tolerance in constructing transgenic plants. The modes of action of some of the best-studied and widespread herbicides are briefly reviewed. Particular attention is given to those herbicide-inhibited processes that bacteria and plants have in common. We describe bacterial mutant genes of herbicide resistance, peculiarities of their introduction into plants, and success in the construction of transgenic resistant plants.19883079186
9204130.9974Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology.202540446167
9199140.9973Arabidopsis as a model host for studying plant-pathogen interactions. Because the molecular biology and genetics of Arabidopsis thaliana are so well defined, it is potentially a superb subject for research on plant-pathogen interactions. Viruses, bacteria and fungi that infect Arabidopsis and are representative pathogens of economically important plants have recently been described. The search now is for a pathogenic fungus with tractable genetics to combine with a direct analysis of plant resistance genes.19938162407
9181150.9973All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.202539691979
8241160.9973Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.202234937124
9727170.9973Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations.202030725190
8253180.9973Strategies used by bacterial pathogens to suppress plant defenses. Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance.200415231256
8243190.9973Rooteomics: the challenge of discovering plant defense-related proteins in roots. In recent years, a strong emphasis has been given in deciphering the function of genes unraveled by the completion of several genome sequencing projects. In plants, functional genomics has been massively used in order to search for gene products of agronomic relevance. As far as root-pathogen interactions are concerned, several genes are recognized to provide tolerance/resistance against potential invaders. However, very few proteins have been identified by using current proteomic approaches. One of the major drawbacks for the successful analysis of root proteomes is the inherent characteristics of this tissue, which include low volume content and high concentration of interfering substances such as pigments and phenolic compounds. The proteome analysis of plant-pathogen interactions provides important information about the global proteins expressed in roots in response to biotic stresses. Moreover, several pathogenic proteins superimpose the plant proteome and can be identified and used as targets for the control of viruses, bacteria, fungi and nematode pathogens. The present review focuses on advances in different proteomic strategies dedicated to the challenging analysis of plant defense proteins expressed during bacteria-, fungi- and nematode-root interactions. Recent developments, limitations of the current techniques, and technological perspectives for root proteomics aiming at the identification of resistance-related proteins are discussed.200818393883