# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5055 | 0 | 1.0000 | The PitA protein contributes to colistin susceptibility in Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of problematic infections in individuals with predisposing conditions. Infections can be treated with colistin but some isolates are resistant to this antibiotic. To better understand the genetic basis of resistance, we experimentally evolved 19 independent resistant mutants from the susceptible laboratory strain PAO1. Whole genome sequencing identified mutations in multiple genes including phoQ and pmrB that have previously been associated with resistance, pitA that encodes a phosphate transporter, and carB and eno that encode enzymes of metabolism. Individual mutations were engineered into the genome of strain PAO1. Mutations in pitA, pmrB and phoQ increased the minimum inhibitory concentration (MIC) for colistin 8-fold, making the bacteria resistant. Engineered pitA/phoQ and pitA/pmrB double mutants had higher MICs than single mutants, demonstrating additive effects on colistin susceptibility. Single carB and eno mutations did not increase the MIC suggesting that their effect is dependent on the presence of other mutations. Many of the resistant mutants had increased susceptibility to β-lactams and lower growth rates than the parental strain demonstrating that colistin resistance can impose a fitness cost. Two hundred and fourteen P. aeruginosa isolates from a range of sources were tested and 18 (7.8%) were colistin resistant. Sequence variants in genes identified by experimental evolution were present in the 18 resistant isolates and may contribute to resistance. Overall our results identify pitA mutations as novel contributors to colistin resistance and demonstrate that resistance can reduce fitness of the bacteria. | 2023 | 37824582 |
| 5766 | 1 | 0.9998 | Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial. | 2023 | 37192202 |
| 6277 | 2 | 0.9997 | A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations. | 2019 | 31570397 |
| 5838 | 3 | 0.9997 | Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug. | 2024 | 39203486 |
| 5056 | 4 | 0.9997 | Step-Wise Increase in Tigecycline Resistance in Klebsiella pneumoniae Associated with Mutations in ramR, lon and rpsJ. Klebsiella pneumoniae is a gram-negative bacterium that causes numerous diseases, including pneumonia and urinary tract infections. An increase in multidrug resistance has complicated the treatment of these bacterial infections, and although tigecycline shows activity against a broad spectrum of bacteria, resistant strains have emerged. In this study, the whole genomes of two clinical and six laboratory-evolved strains were sequenced to identify putative mutations related to tigecycline resistance. Of seven tigecycline-resistant strains, seven (100%) had ramR mutations, five (71.4%) had lon mutations, one (14.2%) had a ramA mutation, and one (14.2%) had an rpsJ mutation. A higher fitness cost was observed in the laboratory-evolved strains but not in the clinical strains. A transcriptome analysis demonstrated high expression of the ramR operon and acrA in all tigecycline-resistant strains. Genes involved in nitrogen metabolism were induced in the laboratory-evolved strains compared with the wild-type and clinical strains, and this difference in nitrogen metabolism reflected the variation between the laboratory-evolved and the clinical strains. Complementation experiments showed that both the wild-type ramR and the lon genes could partially restore the tigecycline sensitivity of K. pneumoniae. We believe that this manuscript describes the first construct of a lon mutant in K. pneumoniae, which allowed confirmation of its association with tigecycline resistance. Our findings illustrate the importance of the ramR operon and the lon and rpsJ genes in K. pneumoniae resistance to tigecycline. | 2016 | 27764207 |
| 6264 | 5 | 0.9997 | Multi-drug resistance pattern and genome-wide SNP detection in levofloxacin-resistant uropathogenic Escherichia coli strains. OBJECTIVES: Antibiotic treatment is extremely stressful for bacteria and has profound effects on their viability. Such administration induces physiological changes in bacterial cells, with considerable impact on their genome structure that induces mutations throughout the entire genome. This study investigated drug resistance profiles and structural changes in the entire genome of uropathogenic Escherichia coli (UPEC) strains isolated from six adapted clones that had evolved under laboratory conditions. METHODS: Eight UPEC strains, including two parental strains and six adapted clones, with different fluoroquinolone resistance levels originally isolated from two patients were used. The minimum inhibitory concentration (MIC) of 28 different antibiotics including levofloxacin was determined for each of the eight strains. In addition, the effects of mutations acquired with increased drug resistance in the levofloxacin-resistant strains on expression of genes implicated to be involved in drug resistance were examined. RESULTS: Of the eight UPEC strains used to test the MIC of 28 different antibiotics, two highly fluoroquinolone-resistant strains showed increased MIC in association with many of the antibiotics. As drug resistance increased, some genes acquired mutations, including the transcriptional regulator acrR and DNA-binding transcriptional repressor marR. Two strain groups with genetically different backgrounds (GUC9 and GFCS1) commonly acquired mutations in acrR and marR. Notably, acquired mutations related to efflux pump upregulation also contributed to increases in MIC for various antibiotics other than fluoroquinolone. CONCLUSIONS: The present results obtained using strains with artificially acquired drug resistance clarify the underlying mechanism of resistance to fluoroquinolones and other types of antibiotics. | 2024 | 38041251 |
| 5836 | 6 | 0.9997 | Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. | 2010 | 20953948 |
| 5837 | 7 | 0.9997 | The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials. | 2017 | 28198411 |
| 5059 | 8 | 0.9997 | Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE: Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria. | 2024 | 39611852 |
| 5765 | 9 | 0.9997 | Expression of Pseudomonas aeruginosa Antibiotic Resistance Genes Varies Greatly during Infections in Cystic Fibrosis Patients. The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC β-lactamase that degrades β-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation. | 2018 | 30201819 |
| 6263 | 10 | 0.9997 | Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype. | 2021 | 33875431 |
| 6281 | 11 | 0.9997 | Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in Pseudomonas aeruginosa. While much attention has been focused on acquired antibiotic resistance genes, chromosomal mutations may be most important in chronic infections where isolated, persistently infecting lineages experience repeated antibiotic exposure. Here, we used experimental evolution and whole-genome sequencing to investigate chromosomally encoded mutations causing aztreonam resistance in Pseudomonas aeruginosa and characterized the secondary consequences of resistance development. We identified 19 recurrently mutated genes associated with aztreonam resistance. The most frequently observed mutations affected negative transcriptional regulators of the mexAB-oprM efflux system and the target of aztreonam, ftsI While individual mutations conferred modest resistance gains, high-level resistance (1,024 µg/ml) was achieved through the accumulation of multiple variants. Despite being largely stable when strains were passaged in the absence of antibiotics, aztreonam resistance was associated with decreased in vitro growth rates, indicating an associated fitness cost. In some instances, evolved aztreonam-resistant strains exhibited increased resistance to structurally unrelated antipseudomonal antibiotics. Surprisingly, strains carrying evolved mutations which affected negative regulators of mexAB-oprM (mexR and nalD) demonstrated enhanced virulence in a murine pneumonia infection model. Mutations in these genes, and other genes that we associated with aztreonam resistance, were common in P. aeruginosa isolates from chronically infected patients with cystic fibrosis. These findings illuminate mechanisms of P. aeruginosa aztreonam resistance and raise the possibility that antibiotic treatment could inadvertently select for hypervirulence phenotypes.IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects. | 2017 | 29089424 |
| 5054 | 12 | 0.9997 | In vitro resistance development gives insights into molecular resistance mechanisms against cefiderocol. Cefiderocol, a novel siderophore cephalosporin, demonstrates promising in vitro activity against multidrug-resistant Gram-negative bacteria, including carbapenemase-producing strains. Nonetheless, only a few reports are available regarding the acquisition of resistance in clinical settings, primarily due to its recent usage. This study aimed to investigate cefiderocol resistance using an in vitro resistance development model to gain insights into the underlying molecular resistance mechanisms. Cefiderocol susceptible reference strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) and a clinical Acinetobacter baumannii complex isolate were exposed to increasing cefiderocol concentrations using a high-throughput resistance development model. Cefiderocol susceptibility testing was performed using broth microdilution. Whole-genome sequencing was employed to identify newly acquired resistance mutations. Our in vitro resistance development model led to several clones of strains exhibiting cefiderocol resistance, with MIC values 8-fold to 512-fold higher than initial levels. In total, we found 42 different mutations in 26 genes, of which 35 could be described for the first time. Putative loss-of-function mutations were detected in the envZ, tonB, and cirA genes in 13 out of 17 isolates, leading to a decrease in cefiderocol influx. Other potential resistance mechanisms included multidrug efflux pumps (baeS, czcS, nalC), antibiotic-inactivating enzymes (ampR, dacB), and target mutations in penicillin-binding-protein genes (mrcB). This study reveals new insights into underlying molecular resistance mechanisms against cefiderocol. While mutations leading to reduced influx via iron transporters was the most frequent resistance mechanism, we also detected several other novel resistance mutations causing cefiderocol resistance. | 2024 | 39080477 |
| 5761 | 13 | 0.9996 | The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant. | 2021 | 34987489 |
| 6266 | 14 | 0.9996 | Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis. | 2012 | 23022568 |
| 6265 | 15 | 0.9996 | Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. The fitness cost of the genes responsible for resistance to fluoroquinolones in clinical isolates of Streptococcus pneumoniae were estimated in vitro in a common genetic background. Naturally occurring parC, parE, and gyrA loci containing mutations in the quinolone-resistance-determining regions were introduced by transformation into S. pneumoniae strain R6 individually and in combinations. The fitness of these transformants was estimated by pairwise competition experiments with a common R6 strain. On average, single par and gyr mutants responsible for low-level MIC resistance (first-step resistance) impose a fitness burden of approximately 8%. Some of these mutants engender no measurable cost, while one, a parE mutant, reduces the fitness of these bacteria by more than 40%. Most interestingly, the addition of the second par or gyr mutations required for clinically significant, high-MIC fluoroquinolone resistance does not increase the fitness burden imposed by these single genes and can even reduce it. We discuss the implications of these results for the epidemiology of fluoroquinolone resistance and the evolution of acquired resistance in treated patients. | 2007 | 17116668 |
| 5754 | 16 | 0.9996 | Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. OBJECTIVES: Efflux in bacteria is a ubiquitous mechanism associated with resistance to antimicrobials agents. Efflux pump inhibitors (EPIs) have been developed to inhibit efflux mechanisms and could be a good alternative to reverse colistin resistance, but only CCCP has shown good activity. The aim of our study was to identify CCCP activity in a collection of 93 Gram-negative bacteria with known and unknown colistin resistance mechanisms including isolates with mcr-1 plasmid-mediated colistin resistance. METHODS: Colistin MIC was evaluated with and without CCCP and the fold decrease of colistin MIC was calculated for each strain. In order to evaluate the effect of this combination, a time-kill study was performed on five strains carrying different colistin resistance mechanisms. RESULTS: Overall, CCCP was able to reverse colistin resistance for all strains tested. The effect of CCCP was significantly greater on intrinsically colistin-resistant bacteria (i.e. Proteus spp., Serratia marcescens, Morganella morganii and Providencia spp.) than on other Enterobacteriaceae (P < 0.0001). The same was true for bacteria with a heteroresistance mechanism compared to bacteria with other colistin resistance mechanisms (P < 0.0001). A time-kill study showed the combination was bacteriostatic on strains tested. CONCLUSIONS: These results suggest an efflux mechanism, especially on intrinsically resistant bacteria and Enterobacter spp., but further analysis is needed to identify the molecular support of this mechanism. EPIs could be an alternative for restoring colistin activity in Gram-negative bacteria. Further work is necessary to identify new EPIs that could be used in humans. | 2018 | 29718423 |
| 6279 | 17 | 0.9996 | Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections. | 2017 | 27916419 |
| 5060 | 18 | 0.9996 | Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen.IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates. | 2020 | 32161146 |
| 3805 | 19 | 0.9996 | De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Sensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in an Escherichia coli mutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level. | 2016 | 27431218 |