Molecular mechanisms of colistin- and multidrug-resistance in bacteria among patients with hospital-acquired infections. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
504601.0000Molecular mechanisms of colistin- and multidrug-resistance in bacteria among patients with hospital-acquired infections. AIM: The increasing burden of resistance in Gram-negative bacteria (GNB) is becoming a major issue for hospital-acquired infections. Therefore, understanding the molecular mechanisms is important. METHODOLOGY: Resistance genes of phenotypically colistin-resistant GNB (n = 60) were determined using whole genome sequencing. Antimicrobial susceptibility patterns were detected by Vitek®2 & broth microdilution. RESULTS: Of these phenotypically colistin-resistant isolates, 78% were also genetically resistant to colistin. Activation of efflux pumps, and point-mutations in pmrB, and MgrB genes conferred colistin resistance among GNB. Eight different strains of K. pneumoniae were identified and ST43 was the most prominent strain with capsular type-specific (cps) gene KL30. DISCUSSION: These results, in combination with rapid diagnostic methods, will help us better advice appropriate antimicrobial regimens.202337753358
157410.9998Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Carbapenem-resistant Gram-negative bacteria are a public health threat that requires urgent action. The fact that these pathogens commonly also harbor resistance mechanisms for several other antimicrobial classes further reduces patient treatment options. The present study aimed to provide information regarding the multidrug resistance genetic background of carbapenem-resistant Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during routine practice, were characterized using a DNA microarray-based assay. Various different resistance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim, sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. baumannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in Central Greece, providing evidence of their continuous genetic evolution.202235056608
166620.9998Detection of PhoP-mediated colistin resistance in Gram-negative bacteria without mcr genes in human population in the Ho Municipality, Ghana. INTRODUCTION: Antimicrobial resistance (AMR) has become a global public health threat, with colistin emerging as a last-resort treatment option for multidrug-resistant Gram-negative infections. However, the emergence of colistin resistance, mediated by mechanisms like mutations in the PhoP gene, raises concerns about the future utility of this antibiotic. This study aimed to determine the prevalence of PhoP-mediated colistin resistance in Gram-negative bacteria isolated from the stool of residents in the Ho Municipality, Ghana. METHODS: In this cross-sectional study, 110 stool samples were collected from June 2021 to December 2022. Gram-negative bacteria were isolated, and colistin susceptibility was determined by broth microdilution. Genomic DNA from resistant isolates was extracted and sequenced using the Nanopore platform to detect the presence of the PhoP gene. RESULTS: Of the 107 Gram-negative isolates, 57 % were resistant to colistin. The PhoP gene was detected in 61.4 % of the colistin-resistant isolates, with the highest prevalence observed in Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. CONCLUSION: The study reveals a high prevalence of PhoP-mediated colistin resistance among Gram-negative bacteria colonizing residents in the Ho Municipality, highlighting the role of the gut microbiota as a reservoir for antibiotic resistance. Continued surveillance and a collaborative One Health approach are crucial to address this growing threat.202439524735
167430.9998Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BACKGROUND: Bloodstream infections (BSI) are associated with high morbidity and mortality. This scenario worsens with the emergence of drug-resistant pathogens, resulting in infections which are difficult to treat or even untreatable with conventional antimicrobials. The aim of this study is to describe the epidemiological aspects of BSI caused by multiresistant gram-negative bacilli (MDR-GNB). METHODS: We conducted a laboratory-based surveillance for gram-negative bacteremia over a 1-year period. The bacterial isolates were identified by MALDI-TOF/MS and the antimicrobial susceptibility testing was performed by VITEK®2. Resistance genes were identified through PCR assays. RESULTS: Of the 143 patients, 28.7% had infections caused by MDR-GNB. The risk factors for MDR bacteremia were male sex, age ≥ 60, previous antimicrobial use, liver disease and bacteremia caused by K. pneumoniae. K. pneumoniae was the most frequently observed causative agent and had the highest resistance level. Regarding the resistance determinants, SHV, TEM, OXA-1-like and CTX-M-gp1 were predominant enzymatic variants, whereas CTX-M-gp9, CTX-M-gp2, KPC, VIM, GES, OXA-48-like, NDM and OXA-23-like were considered emerging enzymes. CONCLUSIONS: Here we demonstrate that clinically relevant antibiotic resistance genes are prevalent in this setting. We hope our findings support the development of intervention measures by policy makers and healthcare professionals to face antibiotic resistance.201931296179
167040.9997KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla (KPC-2) gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates.201121818609
222750.9997Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing Gram-negative bacteria in the oral cavity. Prophylactic administration of broad-spectrum antibiotics in surgery can change the oral microbiome and induce colonization of oral cavity with Gram-negative bacteria including multidrug (MDR) or extensively drug resistant (XDR) organisms which can lead to lower respiratory tract infections. The aim of the study was to analyse the Gram-negative isolates obtained from oral cavity of the mechanically ventilated patients in ICUs, after prophylactic application of antibiotics and their resistance mechanisms and to compare them with the isolates obtained from tracheal aspirates from the same patients. The antibiotic susceptibility was determined by broth dilution method. PCR was applied to detect genes encoding β-lactamases. Marked diversity of Gram-negative bacteria and resistance mechanisms was found. High resistance rates and high rate of bla(CTX-M) and carbapenemase encoding genes (bla(VIM-1) , bla(OXA-48) ) were found among Klebsiella pneumoniae. Pseudomonas aeruginosa was found to harbour bla(VIM) and in one strain bla(PER-1) gene, whereas Acinetobacter baumannii produced OXA-23-like and OXA-24/40-like oxacillinases and was XDR in all except one case. All XDR isolates belong to international clonal lineage II (IC II). The main finding of the study is that the prophlylactic application of antibiotics in surgery intensive care units (ICUs) is associated with the colonization of oral cavity and lower respiratory tract with Gram-negative bacteria. The identity of Gram-negative bacteria in oral cavity reflected those found in endotracheal aspirates leading to conclusion that oral swab as non-invasive specimen can predict the colonization of lower respiratory tract with resistant Gram-negative organisms and the risk for development of ventilator-associated pneumonia.202133896011
85960.9997Analysis of mcr family of colistin resistance genes in Gram-negative isolates from a tertiary care hospital in India. AIM: Colistin serves as the drug of last resort for combating numerous multidrug-resistant (MDR) Gram-negative infections. Its efficacy is hampered by the prevalent issue of colistin resistance, which severely limits treatment options for critically ill patients. Identifying resistance genes is crucial for controlling resistance spread, with horizontal gene transfer being the primary mechanism among bacteria. This study aimed to assess the prevalence of plasmid-mediated mcr genes associated with colistin resistance in Gram-negative bacteria, utilizing both genotypic and phenotypic tests. METHODS AND RESULTS: The clinical isolates (n = 913) were obtained from a tertiary care center in Chennai, India. Colistin resistance was seen among Gram-negative isolates. These strains underwent screening for mcr-1, mcr-3, mcr-4, and mcr-5 genes via conventional PCR. Additionally, mcr-positive isolates were confirmed through Sanger sequencing and phenotypic testing. The bacterial isolates predominantly comprised Klebsiella pneumoniae (62.43%), Escherichia coli (19.71%), Pseudomonas aeruginosa (10.73%), and Acinetobacter baumannii (4.81%), along with other species. All isolates exhibited multidrug resistance to three or more antibiotic classes. Colistin resistance, determined via broth microdilution (BMD) using CLSI guidelines, was observed in 13.08% of the isolates studied. Notably, mcr-5 was detected in K. pneumoniae in PCR, despite its absence in Sanger sequencing and phenotypic tests (including the combined-disk test, colistin MIC in the presence of EDTA, and Zeta potential assays). This finding underscores the importance of employing multiple diagnostic approaches to accurately identify colistin resistance mechanisms.202438986507
223070.9997Rapid detection of gram-negative antimicrobial resistance determinants directly from positive blood culture broths using a multiplex PCR system. Currently available rapid blood culture diagnostics detect few gram-negative resistance determinants, limiting their clinical utility. We prospectively evaluated the prototype BIOFIRE FILMARRAY Antimicrobial Resistance (AMR) Panel, a rapid multiplex PCR test that detects 31 AMR genes, on residual positive blood culture broths from patients with gram-negative bacteremia due to five target organisms at a New York City hospital. Predicted antimicrobial resistance based on the AMR Panel was compared to results from broth microdilution testing of bloodstream isolates recovered in culture. A simulated stewardship study assessed opportunities for the optimization of therapy if the AMR Panel results had been available for patient care in real time. We enrolled 148 patients with gram-negative bacteremia (Escherichia coli, n = 75; Klebsiella pneumoniae, n = 44; Pseudomonas aeruginosa, n = 17; Enterobacter cloacae complex, n = 9; and Acinetobacter baumannii, n = 3). The sensitivity of the AMR Panel for predicting antimicrobial resistance was ≥90% for 10/14 antimicrobial agents in E. coli and for 10/16 agents in K. pneumoniae. Specificity was ≥90% for 15/17 agents in E. coli and for all 16 agents in K. pneumoniae. Performance for other organisms was poor. For E. coli or K. pneumoniae bacteremia, use of the AMR Panel could have led to earlier escalation or de-escalation of β-lactam therapy in a majority of patients compared to what actually occurred. This study demonstrates that a rapid multiplex PCR test with a large menu of AMR genes can be applied to positive blood culture broths to rapidly predict resistance to frontline antimicrobial agents in patients with E. coli or K. pneumoniae bacteremia.IMPORTANCEPatients with gram-negative bacteremia require urgent treatment with antimicrobial agents that are effective against their infecting pathogen. However, conventional laboratory work-up of blood cultures takes days to yield results, and during this time, patients may receive ineffective therapies. We evaluated the prototype BIOFIRE FILMARRAY AMR Panel, an assay that detects 31 genes in gram-negative bacteria that confer resistance to β-lactams, fluoroquinolones, and aminoglycosides in approximately 1 hour, directly from positive blood culture broths, and compared these results to antimicrobial susceptibility testing of isolates recovered in culture. We found that the AMR Panel accurately predicted resistance in Escherichia coli and Klebsiella pneumoniae to most antimicrobials. Moreover, if results from this assay had been used for patient care, there would have been opportunities to optimize antimicrobial prescribing more quickly than using conventional methods. These data demonstrate how novel molecular assays could optimize care for patients with E. coli and K. pneumoniae bacteremia.202541117625
157080.9997Genomic Insights into Two Colistin-Resistant Klebsiella pneumoniae Strains Isolated from the Stool of Preterm Neonate During the First Week of Life. Background: Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life. Materials and Methods: In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates. Results: The strains harbored bla(SHV-27), bla(SHV-71), and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance. Conclusion: The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.202031545116
504790.9997Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including bla(NMD-5) and bla(OXA) derivative types, as well as a mutated outer membrane porin protein (OmpK37).202438534710
2228100.9997Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.201931849899
1571110.9997Klebsiella pneumoniae ST147 harboring bla(NDM-1), multidrug resistance and hypervirulence plasmids. The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (bla(NDM-1)) is found in Enterobacteriaceae including K. pneumoniae. The bla(NDM-1) is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of bla(NDM-1) gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the bla(NDM-1) gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the bla(NDM-1) gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.202438315028
1676120.9997Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537
1675130.9997Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya. BACKGROUND: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening. Surveillance of bacterial infections in ICUs and drug resistance will help to understand the magnitude of the problem it poses and inform response strategies. We assessed bacterial infections in ICU setting by identifying prevalent Gram-negative bacterial species and characterized their antibiotic susceptibility patterns. METHODS: Cross-sectional samples collected from Kenyatta National Hospital ICU between January and June 2021 were cultured and phenotypic identification of culture-positive samples performed using VITEK 2. Antibiotic susceptibility patterns were determined based on Antimicrobial Susceptibility Testing (AST) results. Cephalosporin-resistant Gram-negative bacteria were assessed by PCR to detect the presence of ESBL genes including ( (bla) CTX-M, (bla) SHV, (bla) TEM, (bla) OXA). RESULTS AND DISCUSSION: Out of the 168 Gram-negative isolates, Acinetobacter baumanii was the most abundant (35%). Other isolates that were present at frequencies more than 15% are Klebsiella pneumoniae and Escherichia. coli. A. baumaniii is known to be a notorious bacterium in ICU due to its multidrug resistance nature. Indeed, A. baumanii isolates from Kenyatta National Hospital showed significantly high level of phenotypic resistance. Concordant with the high level of phenotypic resistance, we found high carriage of the ESBL genes among the isolates analysed in this study. Moreover, majority of isolates harboured all the four ESBL genes. CONCLUSION: A high rate of phenotypic and genetic resistance was detected among the tested isolates. Resistance to cephalosporins was primarily driven by acquisition of the ESBL genes. The high prevalence rate of ESBL genes in ICU bacterial isolates shown in this study has a important implication for ICU patient management and general antibiotics use.202339850338
2455140.9997Molecular Mechanisms of Colistin Resistance Among Klebsiella Pneumoniae Strains. BACKGROUND: The increasing rate of infections caused by multiple drug resistant gram-negative bacteria has led to resuscitation of colistin. As a result, colistin resistance, mainly among Klebsiella pneumoniae strains has also been increased. The aim of this study was to investigate molecular mechanisms behind colistin resistance. METHODS: Twenty colistin-resistant K. pneumoniae strains isolated from clinical samples of different patients were involved in this study. VITEK2 automated ID/AST system (Biomeriux, France) was used for the identification and also the susceptibility testing for antibiotics other than colistin. Colistin susceptibility was determined by broth microdilution method. To identify the mechanisms of resistance, mutations on mgrB genes, expression levels of pmrA, pmrB, pmrC, pmrD, pmrE, pmrK, phoQ, and phoP genes, and the presence of plasmid mediated colistin resistance genes, mcr-1 and mcr-2 were investigated. RESULTS: As a result of the study, increased expression levels of the pmrA, pmrB, pmrD, pmrK, phoP, and phoQ genes were observed. All colistin resistant strains were found wild type for the mgrB gene which is thought to be esponsible for colistin resistance. Also, no mcr-1 or mcr-2 genes which are the causes of plasmid mediated colistin resistance have been detected in any of the strains. CONCLUSIONS: Among the colistin resistant K. pneumoniae strains included in our study, increased expression Levels of the genes responsible for cell membrane modifications related with colistin resistance were the most common mechanisms.201931307167
1665150.9997Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Klebsiella pneumoniae is an important human pathogen, able to accumulate and disseminate a variety of antimicrobial resistance genes. Resistance to colistin, one of the last therapeutic options for multi-drug-resistant bacteria, has been reported increasingly. Colistin-resistant K. pneumoniae (ColRKp) emerged in two hospitals in Rio de Janeiro state, Brazil in 2016. The aim of this study was to investigate if these ColRKp isolates were clonally related when compared between hospitals, to identify the molecular mechanisms of colistin resistance, and to describe other antimicrobial resistance genes carried by isolates. Twenty-three isolates were successively recovered, and the whole-genome sequence was analysed for 10, each of a different pulsed-field gel electrophoresis (PFGE) type. Although some PFGE clusters were found, none of them included isolates from both hospitals. Half of the isolates were assigned to CC258, three to ST152 and two to ST15. One isolate was pandrug resistant, one was extensively drug resistant, and the others were multi-drug resistant. Colistin resistance was related to mutations in mgrB, pmrB, phoQ and crrB. Eleven new mutations were found in these genes, including two nucleotide deletions in mgrB. All isolates were carbapenem resistant, and seven were associated with carbapenemase carriage (bla(KPC-2) in six isolates and bla(OXA-370) in one isolate). All isolates had a bla(CTX-M), and two had a 16S ribosomal RNA methyltransferase encoding gene (armA and rmtB). ColRKp were composed of epidemic clones, but cross-dissemination between hospitals was not detected. Colistin resistance emerged with several novel mutations amid highly resistant strains, further restricting the number of drugs available and leading to pandrug resistance.201931479740
1667160.9997Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya.202032972937
1703170.9997Acinetobacter baumannii clinical isolates from outbreaks in Erbil hospitals after the COVID-19 pandemic. INTRODUCTION: Acinetobacter baumannii is endemic in hospital environments, and since the coronavirus disease 2019 (COVID-19) pandemic, multidrug-resistant A. baumannii has become more potent. This potential evolution is driven by the undetectable numbers of gene resistances it has acquired. We evaluated the antibiotic-resistance genes in isolates from patients in Erbil hospitals. METHODOLOGY: This is the first study to demonstrate the antimicrobial resistance epidemic in Erbil, Iraq. A total of 570 patients, including 100 COVID-19 patients were tested. Isolate identification, characterization, antibiotics susceptibility test, polymerase chain reaction (PCR) amplification of the antibiotic resistance genes in both bacterial chromosome and plasmid, 16S-23S rRNA gene intergenic spacer (ITS) sequencing using the Sanger DNA sequencing, and phylogenetic analysis were used in this study. RESULTS: Only 13% of A. baumannii isolates were from COVID-19 patients. All isolates were multi-drug resistant due because of 24 resistance genes located in both the bacterial chromosome or the plasmid. blaTEM gene was detected in the isolates; however, aadB was not detected in the isolated bacteria. New carbapenemase genes were identified by Sanger sequencing and resistance genes were acquired by plasmids. CONCLUSIONS: The study identified metabolic differences in the isolates; although all the strains used the coumarate pathway to survive. Several resistance genes were present in the isolates' plasmids and chromosome. There were no strong biofilm producers. The role of the plasmid in A. baumannii resistance development was described based on the results.202439499748
1679180.9997Analysis of ESKAPE pathogens in clinical isolates in a tertiary care hospital in China from 2018 to 2023. The widespread use of antimicrobial agents correlated with the increasing incidence of nosocomial infections and bacterial antibiotic resistance. These have become major challenges in the prevention and control of hospital-acquired infections worldwide. The aims of this study were to analyze the distribution and characteristics of ESKAPE pathogenic bacteria and their antibiotic resistance profile among clinical isolates from a tertiary hospital in China from 2018 to 2023. The results showed that a total of 20,472 non-duplicated pathogenic bacteria were isolated from clinical specimens in this hospital between 2018 and 2023, of which the top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii. In case of E. coli the main detected resistance genes were blaCTX-M, blaTEM and blaOXA. K. pneumoniae mainly carried blaOXA, blaKPC and blaNDM genes. P. aeruginosa was mainly positive for blaOXA, AmpC type beta-lactamases and blaVIM genes. A. baumannii mainly carried ArmA, blaTEM and cas3 genes. S. aureus was mainly positive for mecA, erm(C) and erm(A) genes. In this study, we have found that the antibiotic resistance of common pathogens from clinical isolates in a tertiary hospital in China in the past 6 years is severe, and A. baumannii was particularly a prominent pathogen. There is an urgent need to strengthen the prevention and control of nosocomial infections and antimicrobial drug management in order to curb the spread of multidrug-resistant bacteria.202540522743
1686190.9997Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.201829883490