Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
504301.0000Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System. Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in less than 15 min but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF MS system (Bruker Daltonics). We optimized the sample preparation protocol by using a set of 6 mobile colistin resistance (MCR) protein-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 confirmed MCR protein producers, 12 colistin-resistant isolates that tested negative for commonly encountered mcr genes (i.e., likely chromosomally resistant isolates), and 9 polymyxin-susceptible isolates. We calculated polymyxin resistance ratio (PRR) values from the acquired spectra; PRR values of 0, indicating polymyxin susceptibility, were obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains, independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test adapted for the routine MALDI Biotyper Sirius system provides an unbiased, fast, reliable, cost-effective, and high-throughput way of detecting colistin resistance in clinical E. coli isolates.201931597744
504410.9997Detection of Colistin Resistance in Salmonella enterica Using MALDIxin Test on the Routine MALDI Biotyper Sirius Mass Spectrometer. Resistance to polymyxins in most Gram-negative bacteria arises from chemical modifications to the lipid A portion of their lipopolysaccharide (LPS) mediated by chromosomally encoded mutations or the recently discovered plasmid-encoded mcr genes that have further complicated the landscape of colistin resistance. Currently, minimal inhibitory concentration (MIC) determination by broth microdilution, the gold standard for the detection of polymyxin resistance, is time consuming (24 h) and challenging to perform in clinical and veterinary laboratories. Here we present the use of the MALDIxin to detect colistin resistant Salmonella enterica using the MALDxin test on the routine matrix-assisted laser desorption ionization (MALDI) Biotyper Sirius system.202032582090
222820.9996Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.201931849899
222730.9996Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing Gram-negative bacteria in the oral cavity. Prophylactic administration of broad-spectrum antibiotics in surgery can change the oral microbiome and induce colonization of oral cavity with Gram-negative bacteria including multidrug (MDR) or extensively drug resistant (XDR) organisms which can lead to lower respiratory tract infections. The aim of the study was to analyse the Gram-negative isolates obtained from oral cavity of the mechanically ventilated patients in ICUs, after prophylactic application of antibiotics and their resistance mechanisms and to compare them with the isolates obtained from tracheal aspirates from the same patients. The antibiotic susceptibility was determined by broth dilution method. PCR was applied to detect genes encoding β-lactamases. Marked diversity of Gram-negative bacteria and resistance mechanisms was found. High resistance rates and high rate of bla(CTX-M) and carbapenemase encoding genes (bla(VIM-1) , bla(OXA-48) ) were found among Klebsiella pneumoniae. Pseudomonas aeruginosa was found to harbour bla(VIM) and in one strain bla(PER-1) gene, whereas Acinetobacter baumannii produced OXA-23-like and OXA-24/40-like oxacillinases and was XDR in all except one case. All XDR isolates belong to international clonal lineage II (IC II). The main finding of the study is that the prophlylactic application of antibiotics in surgery intensive care units (ICUs) is associated with the colonization of oral cavity and lower respiratory tract with Gram-negative bacteria. The identity of Gram-negative bacteria in oral cavity reflected those found in endotracheal aspirates leading to conclusion that oral swab as non-invasive specimen can predict the colonization of lower respiratory tract with resistant Gram-negative organisms and the risk for development of ventilator-associated pneumonia.202133896011
166440.9996Emergence of colistin resistance in Enterobacter aerogenes from Croatia. A colistin-resistant Enterobacter aerogenes [study code 12264] was isolated from the tracheal aspirate of a 71-year-old male patient in the General Hospital [GH] in Pula, Croatia. The patient was previously treated in University Hospital Centre in Rijeka with colistin in order to eradicate Acinetobacter baumannii isolate, susceptible only to colistin and tigecycline. Genes encoding ESBLs [bla(TEM), bla(SHV), bla(CTX-M), bla(PER-1)] were screened by PCR. The strain was shown to possess bla(CTX-M-15) and bla(TEM-1) genes. To asses genes possibly involved in resistance to colistin the chromosomal enconding mgrB gene and the plasmid-mediated mcr-1 and mcr-2 genes were screened as described previously. Mcr-1 and mcr-2 genes were not detected and mgrB gene presented a wild-type sequence. PCR-based Replicon typing method [PBRT] conducted on an E. aerogenes isolate, showed that the strain carried an IncN plasmid. Adaptive mechanisms such as changes of the bacterial cell outer membrane that cause porin decrease or presence of an efflux pump, due to selection pressure exerted by the therapeutic administration of colistin, could be responsible for the development of colistin resistance in our strain, as recently reported in E. aerogenes from France. Due to effective infection control measures, the colistin-resistant strain did not spread to other patients or hospital wards. This is the first report of an ESBL-producing, colistin-resistant E. aerogenes in clinically relevant samples such as endotracheal aspirate and blood culture, showing the presence of this rare resistance profile among Gram-negative bacteria.201829063811
504150.9996Development and Validation of a Clinical Laboratory Improvement Amendments-Compliant Multiplex Real-Time PCR Assay for Detection of mcr Genes. Increased use of colistin in both human and veterinary medicine has led to the emergence of plasmid-mediated colistin resistance (mcr genes). In this study, we report the development of a real-time PCR assay using TaqMan probe-based chemistry for detection of mcr genes from bacterial isolates. Positive control isolates harboring mcr-1 and mcr-2 yielded exponential amplification curves with the assay, and the amplification efficiency was 98% and 96% for mcr-1 and mcr-2, respectively. Each target gene could be reproducibly detected from a sample containing 10(3) cfu/mL of mcr-harboring bacteria, and there was no cross-reactivity with DNA extracted from several multidrug-resistant bacteria harboring other resistance genes, but lacking mcr genes. Both sensitivity and specificity of the mcr real-time PCR assay were 100% in a method validation performed with a set of 25 previously well-characterized bacterial isolates containing mcr-positive and -negative bacteria. This newly developed assay is a rapid and sensitive tool for detecting emerging mcr genes in cultured bacterial isolates. The assay was successfully validated according to quality standards of the Clinical Laboratory Improvement Amendments (CLIA).201930942652
222960.9996A pentaplex real-time PCR assay for rapid identification of major beta-lactamase genes KPC, NDM, CTX, CMY, and OXA-48 directly from bacteria in blood. Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3-5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes (Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia.Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States.Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40-60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes.Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay.Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4-8 c.f.u. ml(-1).Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.202134878374
222570.9996Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria.201930857832
171780.9996Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in gram-negative bacteria by simultaneously genotyping bla(TEM), bla(SHV), and bla(CTX-M). The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of bla(CTX-M) (76%), bla(SHV) (22%), or both (2%), whereas no ESBL variant of bla(TEM) was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%).201020007393
171590.9996Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Beta (β)-lactamases are the most important agents that confer drug resistance among gram-negative bacteria. Continuous mutations in β-lactamases make them remarkably diverse. We carried out the transcriptome analysis of 10 β-lactamase genes of Extended-Spectrum β-lactamases (ESBL), Metallo β-lactamases (MBL), and AmpC β-lactamases (ABL) in drug-resistant and sensitive diarrheagenic E. coli (DEC) isolates obtained from children up to 5 years of age. Out of the 10 β-lactamase genes, four belonged to ESBL (TEM, SHV, CTX, and OXA); three to MBL (NDM-1, IMP, and VIM); and three to ABL (ACT, DHA and CMY) class of genes. The different categories of DEC were estimated for β-lactamases production using a set of conventional phenotypic tests, followed by detection of their messenger RNA (mRNA) expression. The study revealed a direct correlation between mRNA expression of these genes and the presence of antibiotic resistance; also corroborated by mutation analysis of the AmpC promoter region. All the 10 β-lactamase genes showed a significant increase in their expression levels in resistant isolates, compared to those of the sensitive isolates, indicating their possible role in the disease pathogenesis. Increase in mRNA expression of β-lactamase genes, and thereby virulence, may be due to multifactorial parameters causing phenotypic as well as genotypic changes. Our study highlights the necessity of instantaneous detection of β-lactamase gene expression to curb the overwhelming threat posed by emergence of drug resistance amongst the commensal E. coli strains in children from developing countries for larger public health interest.201930842518
859100.9996Analysis of mcr family of colistin resistance genes in Gram-negative isolates from a tertiary care hospital in India. AIM: Colistin serves as the drug of last resort for combating numerous multidrug-resistant (MDR) Gram-negative infections. Its efficacy is hampered by the prevalent issue of colistin resistance, which severely limits treatment options for critically ill patients. Identifying resistance genes is crucial for controlling resistance spread, with horizontal gene transfer being the primary mechanism among bacteria. This study aimed to assess the prevalence of plasmid-mediated mcr genes associated with colistin resistance in Gram-negative bacteria, utilizing both genotypic and phenotypic tests. METHODS AND RESULTS: The clinical isolates (n = 913) were obtained from a tertiary care center in Chennai, India. Colistin resistance was seen among Gram-negative isolates. These strains underwent screening for mcr-1, mcr-3, mcr-4, and mcr-5 genes via conventional PCR. Additionally, mcr-positive isolates were confirmed through Sanger sequencing and phenotypic testing. The bacterial isolates predominantly comprised Klebsiella pneumoniae (62.43%), Escherichia coli (19.71%), Pseudomonas aeruginosa (10.73%), and Acinetobacter baumannii (4.81%), along with other species. All isolates exhibited multidrug resistance to three or more antibiotic classes. Colistin resistance, determined via broth microdilution (BMD) using CLSI guidelines, was observed in 13.08% of the isolates studied. Notably, mcr-5 was detected in K. pneumoniae in PCR, despite its absence in Sanger sequencing and phenotypic tests (including the combined-disk test, colistin MIC in the presence of EDTA, and Zeta potential assays). This finding underscores the importance of employing multiple diagnostic approaches to accurately identify colistin resistance mechanisms.202438986507
1713110.9996Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. AmpC is a type of β-lactamase enzyme produced by bacteria; these enzymes are classified in Class C and Group 1, and these confer resistance to cephamycin. Enterobacterales producing AmpC are reported worldwide and have great clinical importance due to therapeutic restriction and epidemiological importance once the easy dissemination by plasmidic genes to other bacteria is a real threat. These genes are naturally found in some enterobacteria as Enterobacter cloacae, Morganella morganii, and Citrobacter freundii, but other species have demonstrated similar resistance phenotype of AmpC production. Genes carried in plasmids have been described in these species conferring resistance to cefoxitin and causing therapeutic failure in some bacterial infections. This work detected and described five clinical strains of Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae that presented plasmid ampC (pAmpC) isolated from the north of Portugal collected in 2009. AmpC production was confirmed by inhibition of the enzyme by cloxacillin and boronic acid in agar diffusion tests. Also, PCR (polymerase chain reaction) was performed for the detection of gene universal to AmpC, bla(ampC), and others to AmpC group: bla(ACC), bla(CIT), bla(CMY), bla(DHA), and bla(EBC). The conjugation in liquid medium for 24 h was realized to determine if gene is localized in chromosome or plasmid. The isolates and their conjugants showed phenotypic characteristics and bla(CMY) and bla(CIT) were detected by PCR corroborating the AmpC characteristics observed in these bacteria. Confirmation of transfer of plasmid containing genes encoding AmpC is of high epidemiological relevance to the hospital studied and demonstrated the importance of AmpC surveillance and studies in hospital and community environments in order to choose the appropriate therapy for bacterial infections.202032740783
1687120.9996Multiple NDM-5-Expressing Escherichia Coli Isolates From an Immunocompromised Pediatric Host. BACKGROUND: Genes conferring carbapenem resistance have disseminated worldwide among Gram-negative bacteria. Here we present longitudinal changes in clinically obtained Escherichia coli isolates from 1 immunocompromised pediatric patient. This report demonstrates potential for antibiotic resistance genes and plasmids to emerge over time in clinical isolates from patients receiving intensive anticancer chemotherapy and broad-spectrum antibiotics. METHODS: Thirty-three isolates obtained over 7 months from 1 patient were included. Clinical data were abstracted from the medical record. For each isolate, studies included phenotypic antibacterial resistance patterns, sequence typing, bacterial isolate sequencing, plasmid identification, and antibiotic resistance gene identification. RESULTS: Sites of isolation included blood, wound culture, and culture for surveillance purposes from the perianal area. Isolates were of 5 sequence types (STs). All were resistant to multiple classes of antibiotics; 23 (69.6%) were phenotypically resistant to all carbapenems. The blaNDM-5 gene was identified in 22 (67%) isolates, all of ST-167 and ST-940, and appeared to coincide with the presence of the IncFII and IncX3 plasmid. CONCLUSIONS: We present unique microbiologic data from 33 multidrug-resistant E. coli isolates obtained over the course of 7 months from an individual patient in the United States. Two E. coli sequence types causing invasive infection in the same patient and harboring the blaNDM-5 gene, encoded on the IncX3 plasmid and the IncFII plasmid, were identified. This study highlights the emergence of multidrug-resistant bacteria on antibiotic therapy and the necessity of adequate neutrophil number and function in the clearance of bacteremia.202032047833
5040130.9996Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis. BACKGROUND: The emergence of multi-drug-resistant (MDR) micro-organisms prompted new interest in older antibiotics, such as colistin, that had been abandoned previously due to limited efficacy or high toxicity. Over the years, several chromosomal-encoded colistin resistance mechanisms have been described; more recently, 10 plasmid-mediated mobile colistin resistance (mcr) genes have been identified. Spread of these genes among MDR Gram-negative bacteria is a matter of serious concern; therefore, reliable and timely mcr detection is paramount. AIM: To design and validate a multiplex real-time polymerase chain reaction (PCR) assay for detection and differentiation of mcr genes. METHODS: All available mcr alleles were downloaded from the National Center for Biotechnology Information Reference Gene Catalogue, aligned with Clustal Omega and primers designed using Primer-BLAST. Real-time PCR monoplexes were optimized and validated using a panel of 120 characterized Gram-negative strains carrying a wide range of resistance genes, often in combination. Melt-curve analysis was used to confirm positive results. FINDINGS: In-silico analysis enabled the design of a 'screening' assay for detection of mcr-1/2/6, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8 and mcr-9/10, paired with an internal control assay to discount inhibition. A 'supplementary' assay was subsequently designed to differentiate mcr-1, mcr-2, mcr-6, mcr-9 and mcr-10. Expected results were obtained for all strains (100% sensitivity and specificity). Melt-curve analysis showed consistent melting temperature results. Inhibition was not observed. CONCLUSIONS: The assay is rapid and easy to perform, enabling unequivocal mcr detection and differentiation even when more than one variant is present. Adoption by clinical and veterinary microbiology laboratories would aid the surveillance of mcr genes amongst Gram-negative bacteria.202133485969
928140.9996Phenotypic and genotypic characterization of carbapenem encoding genes among carbapenem-resistant Gram-negative bacteria isolated from North Casablanca, Morocco. Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics.202540857960
1674150.9996Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BACKGROUND: Bloodstream infections (BSI) are associated with high morbidity and mortality. This scenario worsens with the emergence of drug-resistant pathogens, resulting in infections which are difficult to treat or even untreatable with conventional antimicrobials. The aim of this study is to describe the epidemiological aspects of BSI caused by multiresistant gram-negative bacilli (MDR-GNB). METHODS: We conducted a laboratory-based surveillance for gram-negative bacteremia over a 1-year period. The bacterial isolates were identified by MALDI-TOF/MS and the antimicrobial susceptibility testing was performed by VITEK®2. Resistance genes were identified through PCR assays. RESULTS: Of the 143 patients, 28.7% had infections caused by MDR-GNB. The risk factors for MDR bacteremia were male sex, age ≥ 60, previous antimicrobial use, liver disease and bacteremia caused by K. pneumoniae. K. pneumoniae was the most frequently observed causative agent and had the highest resistance level. Regarding the resistance determinants, SHV, TEM, OXA-1-like and CTX-M-gp1 were predominant enzymatic variants, whereas CTX-M-gp9, CTX-M-gp2, KPC, VIM, GES, OXA-48-like, NDM and OXA-23-like were considered emerging enzymes. CONCLUSIONS: Here we demonstrate that clinically relevant antibiotic resistance genes are prevalent in this setting. We hope our findings support the development of intervention measures by policy makers and healthcare professionals to face antibiotic resistance.201931296179
1576160.9996Emergence of multidrug-resistant Gram-negative bacteria during selective decontamination of the digestive tract on an intensive care unit. OBJECTIVES: During treatment with selective decontamination of the digestive tract (SDD), four multidrug-resistant (MDR) strains, three different Escherichia coli and one Klebsiella pneumoniae, were isolated from four patients not known as carriers of such MDR strains before their admission to the intensive care unit (ICU) in the Academic Medical Center (AMC) in Amsterdam. These isolates were extended-spectrum beta-lactamase (ESBL)-positive. We investigated whether this was due to interspecies transfer of resistance genes. METHODS: The MDR strains were typed by amplified fragment length polymorphism (AFLP) analysis. The plasmids from these strains were characterized by restriction fragment length polymorphism and the resistance genes were characterized by PCR and sequence analysis. RESULTS: The strains were genetically unrelated and contained identical plasmids with ESBL genes. CONCLUSIONS: We identified an outbreak of plasmid-mediated ESBL genes during SDD treatment in the ICU. The use of third-generation cephalosporins in SDD is associated with the emergence of ESBLs. We conclude that identification of emerging MDR Gram-negative bacteria and recognition of resistance plasmid transfer during SDD treatment are crucial for optimal application of this regimen in ICUs.200616891326
1691170.9996The increasing threat of silver-resistance in clinical isolates from wounds and burns. PURPOSE: The widespread use of silver-containing compounds has led to emergence of silver-resistant bacteria. Few studies are available on the detectability of plasmid-mediated silver-resistance in developing countries. Therefore, we aimed to detect silver-resistance in isolates from wounds and burns, and to genetically characterize plasmid-mediated silver-resistance genes (sil genes). METHODS: One hundred and fifty clinical isolates were obtained from burns and wounds. They were identified using the suitable Analytical Profile Index and MicroScan identification systems. Their antimicrobial susceptibility was tested by the disk diffusion and broth microdilution methods. Their silver nitrate (AgNO(3)) minimum inhibitory concentration (MIC) was determined using the broth macrodilution method. The presence of different sil genes on plasmids extracted from silver-resistant isolates and the replicon types of the extracted plasmids were investigated using polymerase chain reaction (PCR). The ability of these plasmids to impart silver-resistance was tested by transformation. RESULTS: All except two isolates were multidrug-resistant. Nineteen silver-resistant bacterial isolates (12.6%) were detected; with AgNO(3) MIC ≥512 µg/mL. They were identified as Klebsiella pneumoniae (n=7), Staphylococcus aureus (n=4), Escherichia coli (n=2), Enterobacter cloacae (n=2), Pseudomonas aeruginosa (n=2) and Acinetobacter baumannii (n=2). PCR revealed the presence of different sil genes on the extracted plasmids. Plasmid transformation resulted in the transfer of silver-resistance to the resulting transformants. The extracted plasmids had different replicon types. CONCLUSION: Plasmid-mediated silver-resistance was detected for the first time, in clinical P. aeruginosa, A. baumannii and S. aureus isolates; in addition to its detection in K. pneumoniae, E. coli and Enterobacter cloacae. Therefore, strict monitoring on the use of silver compounds in medical settings is required; with implementation of an approved standardized method for silver-resistance detection.201931372006
5046180.9996Molecular mechanisms of colistin- and multidrug-resistance in bacteria among patients with hospital-acquired infections. AIM: The increasing burden of resistance in Gram-negative bacteria (GNB) is becoming a major issue for hospital-acquired infections. Therefore, understanding the molecular mechanisms is important. METHODOLOGY: Resistance genes of phenotypically colistin-resistant GNB (n = 60) were determined using whole genome sequencing. Antimicrobial susceptibility patterns were detected by Vitek®2 & broth microdilution. RESULTS: Of these phenotypically colistin-resistant isolates, 78% were also genetically resistant to colistin. Activation of efflux pumps, and point-mutations in pmrB, and MgrB genes conferred colistin resistance among GNB. Eight different strains of K. pneumoniae were identified and ST43 was the most prominent strain with capsular type-specific (cps) gene KL30. DISCUSSION: These results, in combination with rapid diagnostic methods, will help us better advice appropriate antimicrobial regimens.202337753358
1676190.9996Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537