Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
501101.0000Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.202032042963
501210.9999Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.201121462862
662220.9999Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth-generation cephalosporins) are of especially great concern.200919231979
501030.9999Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described.201931316921
661940.9999Reflection paper on the use of third and fourth generation cephalosporins in food producing animals in the European Union: development of resistance and impact on human and animal health. Resistance to third and fourth generation cephalosporins is rapidly increasing in bacteria infecting humans. Although many of these problems are linked to human to human transmission and to use of antimicrobials in human medicine, the potential role of community reservoirs such as food producing animals needs to be scrutinized. Resistance to third and fourth generation cephalosporins is emerging in enteric bacteria of food producing animals and also in food of animal origin. The genes encoding resistance to these cephalosporins are transferrable and often linked to other resistance genes. Systemic use of third and fourth cephalosporins selects for resistance, but co-selection by other antimicrobials is also likely to influence prevalence of resistance. Although there are many uncertainties, the potential consequences of a further increase of resistance to this critically important class of antimicrobials in bacteria colonising animals are serious. Measures to counter a further increase and spread of resistance among animals should therefore be considered.200920444006
501650.9999Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. Broad-spectrum β-lactamase genes (coding for extended-spectrum β-lactamases and AmpC β-lactamases) have been frequently demonstrated in the microbiota of food-producing animals. This may pose a human health hazard as these genes may be present in zoonotic bacteria, which would cause a direct problem. They can also be present in commensals, which may act as a reservoir of resistance genes for pathogens causing disease both in humans and in animals. Broad-spectrum β-lactamase genes are frequently located on mobile genetic elements, such as plasmids, transposons and integrons, which often also carry additional resistance genes. This could limit treatment options for infections caused by broad-spectrum β-lactam-resistant microorganisms. This review addresses the growing burden of broad-spectrum β-lactam resistance among Enterobacteriaceae isolated from food, companion and wild animals worldwide. To explore the human health hazard, the diversity of broad-spectrum β-lactamases among Enterobacteriaceae derived from animals is compared with respect to their presence in human bacteria. Furthermore, the possibilities of the exchange of genes encoding broad-spectrum β-lactamases - including the exchange of the transposons and plasmids that serve as vehicles for these genes - between different ecosystems (human and animal) are discussed.201020030731
498460.9998Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.202031976793
502770.9998Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Antibacterial resistance is one of the 2019 World Health Organization's top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce.202134946136
661880.9998A review of antimicrobial resistance in imported foods. Antimicrobial resistance is one of the most serious threats to medical science. Food supply is recognized as a potential source of resistant bacteria, leading to the development of surveillance programs targeting primarily poultry, pork, and beef. These programs are limited in scope, not only in the commodities tested, but also in the organisms targeted (Escherichia coli, Salmonella, and Campylobacter); consequently, neither the breadth of food products available nor the organisms that may harbour clinically relevant and (or) mobile resistance genes are identified. Furthermore, there is an inadequate understanding of how international trade in food products contributes to the global dissemination of resistance. This is despite the recognized role of international travel in disseminating antimicrobial-resistant organisms, notably New Delhi metallo-beta-lactamase. An increasing number of studies describing antimicrobial-resistant organisms in a variety of imported foods are summarized in this review.202234570987
662690.9998Multidrug-resistant pathogens in the food supply. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.201525621383
6623100.9998Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved.202133803844
6620110.9998The growing burden of antimicrobial resistance. Since the first usage of antimicrobials, the burden of resistance among bacteria has progressively increased and has accelerated within the last 10 years. Antibiotic resistance genes were present at very low levels prior to the introduction of antibiotics and it is largely the selective pressure of antibiotic use and the resulting exposure of bacteria, not only in humans but also in companion and food animals and the environment, which has caused the rise. The increasing mobility across the globe of people, food and animals is another factor. Examples of this are the international pandemic of different genotypes of CTX-M extended-spectrum beta-lactamases (particularly CTX-M-14 and -15) and the emergence of the carbapenemase KPC-1 in both the USA and Israel. This review details examples of both the emergence and dissemination through different genetic routes, both direct and indirect selective pressure, of significance resistance in Staphylococcus aureus, Enterococcus species, Enterobacteriaceae and Pseudomonas/Acinetobacter. The response made by society to reduce resistance involves surveillance, reduced usage, improved infection control and the introduction of new antimicrobial agents. Although efforts are being made in all these areas, there is an urgent need to increase the effectiveness of these interventions or some bacterial infections will become difficult if not impossible to treat reliably.200818684701
5009120.9998Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. For several billion years, bacteria have developed mechanisms to resist antibacterial substances. In modern time, antibiotics are frequently used in veterinary and human medicine for prevention and treatment of diseases, globally still also for their growth promoting effects as feed additives. This complex situation has evolved in accelerating development and prevalence of multi-drug resistant bacteria in livestock and people. Extended-spectrum beta-lactamase (ESBL) producing bacteria are resistant to a wide range of ß-lactam antibiotics. They are currently considered as one of the main threats for the treatment of infections in humans and animals. In livestock and animal products, poultry and poultry products show the highest prevalence of ESBL-producers with CTX-M-1, TEM-52 and SHV-12 being the most common ESBL-types in poultry. Escherichia coli and Salmonella spp. are the bacteria in poultry, which carry ESBL-genes most frequently. ESBL-producing bacteria are present at every level of the poultry production pyramid and can be detected even in the meconium of newly hatched chicks. The environment close to poultry barns shows high prevalence rates of these bacteria and contributes to an ongoing infection pressure with further ESBL-types. Probiotics have been shown to successfully reduce ESBL-producers in chicken, as well as ESBL-gene transfer. Other feed additives, such as zinc and copper, increase the prevalence of ESBL-producing bacteria when fed to animals. To our best knowledge, this is the first publication presenting a comparative overview of the prevalence of ESBL-types using data from different countries. To reduce the hazard for public health from poultry carrying high numbers of ESBL-producers, preventive measurements must include the surrounding environment and avoidance of antibiotic usage at all levels of the production pyramid. The first results, of the research on the impact of feed additives on the spread of ESBL-genes, indicate the diet as a further, possible magnitude of influence.201728641596
4203130.9998Control and monitoring of antimicrobial resistance in bacteria in food-producing animals in Japan. Increased antimicrobial resistance in bacteria that cause infections in humans is a threat to public health. The use of antimicrobials in food-producing animals in the form of veterinary medicine and feed additives may lead to the emergence or spread of antimicrobial resistance in bacteria of animal origin. In Japan, the use of antimicrobials in food-producing animals is regulated by the Pharmaceutical Affairs Law and Feed Safety Law to minimise the risk of emergence and spread of antimicrobial resistance in bacteria. Since December 2003, all antimicrobials used in food-producing animals have been subjected to risk assessment by the Food Safety Commission. In addition, an antimicrobial resistance monitoring programme has been in place since 2000 to monitor the evolution of resistance to different antimicrobials in bacteria in food-producing animals.200920391381
6621140.9998Global Emergence of Colistin-Resistant Escherichia coli in Food Chains and Associated Food Safety Implications: A Review. Antimicrobial resistance in bacteria represents one of the most important challenges for public health worldwide. Human infections from antimicrobial-resistant bacteria can be transmitted from person to person, via the environment (especially in the hospital environment), or via handling or eating contaminated foods. Colistin is well known as a last-resort antibiotic for the treatment of human infections; a recent study performed in the People's Republic of China has revealed that colistin resistance is also conferred by the plasmid-mediated mcr-1 gene in Escherichia coli. After that discovery, further plasmid-mediated, colistin resistance genes have been detected. However, to date, only reports on E. coli carrying the mcr-1 gene (E. coli mcr-1(+)) in foodstuff are available. E. coli mcr-1(+) has been isolated from food of animal origin and vegetables; this discovery has opened a debate among food safety experts. This review aims to provide a critical overview of the currently available scientific literature on the presence of the plasmid-mediated, colistin resistance gene E. coli mcr-1 in foodstuffs, focusing on the main implications and future perspectives for food safety.201931339371
4843150.9998The Efficacy of Isolated Bacteriophages from Pig Farms against ESBL/AmpC-Producing Escherichia coli from Pig and Turkey Farms. Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL/AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals. The aim of our studies was to isolate bacteriophages capable of destroying ESBL/AmpC-producing Escherichia coli isolated from livestock habitats. The efficacy of isolated phages against ESBL/AmpC E. coli strains varies, but creation of a phage cocktail with broad activity spectrum is possible. This may indicate that the role of phages may not be limited to phage therapy, but bacterial viruses may also be applied against spread of bacteria with antibiotic resistance genes in the environment. We also addressed the hypothesis, that phages, effective for therapeutic purposes may be isolated from distant places and even from different environments other than the actual location of the targeted bacteria. This may be beneficial for practical purposes, as the construction of effective phage preparations does not require access to disease outbreaks.201728405193
3950160.9998Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Intensive animal farming emits to the environment very high concentrations of bioaerosol, mainly composed of microorganisms, including antibiotics resistant strains, and their derivatives. Poland is a significant producer of poultry and swine in Europe; Ukraine is located in the immediate vicinity of Poland and the EU. Thus, the review focuses on the presence of potentially pathogenic and antimicrobial-resistant zoonotic bacteria and antimicrobial genes in the environment of farms and food of animal origin in Poland and Ukraine. Existing data confirms presence of these bacteria in the food animal origin chain environment in both countries. However, it is difficult to compare the scale of multidrug-resistant bacteria (e.g. MRSA, ESBL) dissemination in Poland and Ukraine with other EU countries due to lack of more extensive studies and large-scale monitoring in these two countries. A series of studies concerning resistance of pathogenic bacteria isolated from livestock environment have been published in Poland but usually on single farms with a very limited number of samples, and without a genotypic drug resistance marking. From Ukraine are available only few reports, but also disturbing. The risk of antibiotic-resistant bacteria transmission does not only concern animal farming, but also other facilities of animal origin food supply chains, especially slaughterhouses.202234870776
5005170.9998Plasmid-mediated resistance is going wild. Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments.201830243983
6628180.9998Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface.201931599545
6631190.9998Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed.201829554996