# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5003 | 0 | 1.0000 | Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance. | 2021 | 34364270 |
| 5717 | 1 | 0.9999 | Introduction of the transmissible mobile colistin resistance genes mcr-3 and mcr-9 to the USA via imported seafood. The emergence and global dissemination of the mobile colistin resistance genes (mcr) threaten the efficacy of colistin, a high-priority, critically important antibiotic that is used to treat complicated infections with multidrug-resistant Gram-negative bacteria in humans. The occurrence of mcr in the USA has been suggested to be relatively limited, particularly in bacteria associated with domestic foods and food animals. This is because colistin has neither been marketed nor approved for use in agriculture in the USA. However, mcr-carrying bacteria can occur on foods imported from countries where these genes might be relatively more prevalent. Yet, studies on mcr in vulnerable imported foods in the USA are lacking. To address this gap in knowledge, we assessed the role of imported seafood as a potential carrier of mcr genes to the USA. Imported seafood samples were aseptically collected from eight major retail stores across Georgia, USA. In-depth analyses revealed the occurrence of mcr-9 in bacteria isolated from imported shrimp samples. The mcr-9-carrying bacteria were identified as Serratia nevei, a newly described species that belongs to the Serratia marcescens complex. The mcr-9 in the S. nevei isolates was carried on IncHI2 plasmids that were transferable and conferred colistin resistance to naïve Escherichia coli. Further analysis identified a chromosomal mcr-3.17 in Aeromonas salmonicida isolated from imported scallops. All the mcr-carrying isolates harbored other important antibiotic resistance genes. Taken together, our data showed that imported seafood, specifically shrimps, might be an overlooked source contributing to the introduction and spread of transmissible colistin resistance genes in the USA. IMPORTANCE: Colistin, an important antibiotic, is used to treat certain bacterial infections in humans that can be severe and/or life-threatening. However, these bacteria can acquire the mobile colistin resistance (mcr) genes and become resistant to this antibiotic. Plasmid-borne mcr can jump between bacterial species, spreading in bacteria across a variety of hosts and niches. Therefore, monitoring the spread of mcr is critical to maintain the efficacy of colistin. In the USA, the occurrence of mcr in domestically produced food is thought to be limited. In this study, we showed that mcr can be carried into the USA by bacteria on imported seafood. A specific gene, mcr-9, was located on a plasmid that could be transferred to other bacteria. Therefore, imported seafood can be an overlooked source of mcr in the USA. It is important to monitor and assess mcr in imported seafood to control the proliferation of colistin resistance in the USA. | 2025 | 40622135 |
| 5006 | 2 | 0.9999 | Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance. | 2022 | 36726572 |
| 4951 | 3 | 0.9998 | Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes. | 2024 | 39599474 |
| 6621 | 4 | 0.9998 | Global Emergence of Colistin-Resistant Escherichia coli in Food Chains and Associated Food Safety Implications: A Review. Antimicrobial resistance in bacteria represents one of the most important challenges for public health worldwide. Human infections from antimicrobial-resistant bacteria can be transmitted from person to person, via the environment (especially in the hospital environment), or via handling or eating contaminated foods. Colistin is well known as a last-resort antibiotic for the treatment of human infections; a recent study performed in the People's Republic of China has revealed that colistin resistance is also conferred by the plasmid-mediated mcr-1 gene in Escherichia coli. After that discovery, further plasmid-mediated, colistin resistance genes have been detected. However, to date, only reports on E. coli carrying the mcr-1 gene (E. coli mcr-1(+)) in foodstuff are available. E. coli mcr-1(+) has been isolated from food of animal origin and vegetables; this discovery has opened a debate among food safety experts. This review aims to provide a critical overview of the currently available scientific literature on the presence of the plasmid-mediated, colistin resistance gene E. coli mcr-1 in foodstuffs, focusing on the main implications and future perspectives for food safety. | 2019 | 31339371 |
| 1838 | 5 | 0.9998 | An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance. | 2023 | 37397005 |
| 5016 | 6 | 0.9998 | Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. Broad-spectrum β-lactamase genes (coding for extended-spectrum β-lactamases and AmpC β-lactamases) have been frequently demonstrated in the microbiota of food-producing animals. This may pose a human health hazard as these genes may be present in zoonotic bacteria, which would cause a direct problem. They can also be present in commensals, which may act as a reservoir of resistance genes for pathogens causing disease both in humans and in animals. Broad-spectrum β-lactamase genes are frequently located on mobile genetic elements, such as plasmids, transposons and integrons, which often also carry additional resistance genes. This could limit treatment options for infections caused by broad-spectrum β-lactam-resistant microorganisms. This review addresses the growing burden of broad-spectrum β-lactam resistance among Enterobacteriaceae isolated from food, companion and wild animals worldwide. To explore the human health hazard, the diversity of broad-spectrum β-lactamases among Enterobacteriaceae derived from animals is compared with respect to their presence in human bacteria. Furthermore, the possibilities of the exchange of genes encoding broad-spectrum β-lactamases - including the exchange of the transposons and plasmids that serve as vehicles for these genes - between different ecosystems (human and animal) are discussed. | 2010 | 20030731 |
| 4846 | 7 | 0.9998 | Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. Antimicrobial resistance is one of the major threats to the health and welfare of both humans and animals. The shortage of new antimicrobial agents has led to the re-evaluation of old antibiotics such as fosfomycin as a potential regimen for treating multidrug-resistant bacteria especially extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Fosfomycin is a broad-spectrum bactericidal antibiotic that inhibits the initial step of the cell wall biosynthesis. Fosfomycin resistance can occur due to mutation in the drug uptake system or by the acquisition of fosfomycin-modifying enzymes. In this review, we focus on mobile fosfomycin-resistant genes encoding glutathione-S-transferase which are mainly responsible for fosfomycin resistance in Enterobacteriaceae, that is, fosA and its subtypes, fosC2, and the recently described fosL1-L2. We summarized the proposed origins of the different resistance determinants and highlighted the different plasmid types which are attributed to the dissemination of fosfomycin-modifying enzymes. Thereby, IncF and IncN plasmids play a predominant role. The detection of mobile fosfomycin-resistant genes in Enterobacteriaceae has increased in recent years. Similar to the situation in (East) Asia, the most frequently detected fosfomycin-resistant gene in Europe is fosA3. Mobile fosfomycin-resistant genes have been detected in isolates of human, animal, food, and environmental origin which leads to a growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, at the human-animal-environment interface. | 2020 | 33128341 |
| 4871 | 8 | 0.9998 | Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR. | 2023 | 36640846 |
| 5026 | 9 | 0.9998 | Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: a scoping review. Colistin (also known as polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest number of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region. | 2022 | 36000241 |
| 5005 | 10 | 0.9998 | Plasmid-mediated resistance is going wild. Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments. | 2018 | 30243983 |
| 1865 | 11 | 0.9998 | Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which bla(CTX-M) was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies. | 2025 | 40245502 |
| 5027 | 12 | 0.9998 | Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Antibacterial resistance is one of the 2019 World Health Organization's top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce. | 2021 | 34946136 |
| 4952 | 13 | 0.9998 | Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria(1). Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection(2,3). Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E. coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics. | 2019 | 31235960 |
| 5004 | 14 | 0.9998 | Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept. | 2022 | 36246244 |
| 4861 | 15 | 0.9998 | The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria. | 2021 | 33913748 |
| 5718 | 16 | 0.9998 | A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes bla(TEM-1) and bla(CTX-M-15), sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria. | 2024 | 39012117 |
| 6623 | 17 | 0.9998 | Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved. | 2021 | 33803844 |
| 5010 | 18 | 0.9998 | Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described. | 2019 | 31316921 |
| 1846 | 19 | 0.9998 | Epidemiology and Traits of Mobile Colistin Resistance (mcr) Gene-Bearing Organisms from Horses. Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) threaten the efficacy of colistin (COL), a polymyxin antibiotic that is used as a last-line agent for the treatment of deadly infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. COL has been used for more than 60 years for the prophylactic control and treatment of infections in livestock husbandry but not in horses. Polymyxin B is used for the prophylactic control and empirical treatment of infections in horses without conducting sensitivity tests. The lack of sensitivity testing exerts selection pressure for the acquisition of the mcr gene. By horizontal transfer, mcr-1, mcr-5, and mcr-9 have disseminated among horse populations globally and are harbored by Escherichia coli, Klebsiella, Enterobacter, Citrobacter, and Salmonella species. Conjugative plasmids, insertion sequences, and transposons are the backbone of mcr genes in the isolates, which co-express genes conferring multi- to extensive-drug resistance, including genes encoding extended-spectrum β-lactamase, ampicillinase C, fosfomycin, and fluoroquinolone resistance, and virulence genes. The transmission of mcr genes to/among bacterial strains of equine origin is non-clonal. Contact with horses, horse manure, feed/drinking water, farmers, farmers' clothing/farm equipment, the consumption of contaminated horse meat and its associated products, and the trading of horses, horse meat, and their associated products are routes for the transmission of mcr-gene-bearing bacteria in, to, and from the equine industry. | 2022 | 35893557 |