Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
498301.0000Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).202236360709
388610.9999β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.202133571856
498420.9999Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.202031976793
499230.9999Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. A systematic review was conducted to determine the distribution and prevalence of antibiotic-resistant bacteria (ARB), antimicrobial-resistant genes (ARGs), and antimicrobial-resistant gene determinants (ARGDs) in clinical, environmental, and farm settings and to identify key knowledge gaps in a bid to contain their spread. Fifty-three articles were included. The prevalence of a wide range of antimicrobial-resistant bacteria and their genes was reviewed. Based on the studies reviewed in this systematic review, mutation was found to be the main genetic element investigated. All settings shared 39 ARGs and ARGDs. Despite the fact that ARGs found in clinical settings are present in the environment, in reviewed articles only 12 were found to be shared between environmental and clinical settings; the inclusion of farm settings with these two settings increased this figure to 32. Data extracted from this review revealed farm settings to be one of the main contributors of antibiotic resistance in healthcare settings. ARB, ARGs, and ARGDs were found to be ubiquitous in all settings examined.201830425540
329740.9999Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.202133919179
657150.9999What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Hospitals are hotspots for antimicrobial-resistant bacteria (ARB) and play a major role in both their emergence and spread. Large numbers of these ARB will be ejected from hospitals via wastewater systems. In this review, we present quantitative and qualitative data of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, vancomycin-resistant enterococci and Pseudomonas aeruginosa in hospital wastewaters compared to community wastewaters. We also discuss the fate of these ARB in wastewater treatment plants and in the downstream environment. Published studies have shown that hospital effluents contain ARB, the burden of these bacteria being dependent on their local prevalence. The large amounts of antimicrobials rejected in wastewater exert a continuous selective pressure. Only a few countries recommend the primary treatment of hospital effluents before their discharge into the main wastewater flow for treatment in municipal wastewater treatment plants. Despite the lack of conclusive data, some studies suggest that treatment could favour the ARB, notably ESBL-producing E. coli. Moreover, treatment plants are described as hotspots for the transfer of antibiotic resistance genes between bacterial species. Consequently, large amounts of ARB are released in the environment, but it is unclear whether this release contributes to the global epidemiology of these pathogens. It is reasonable, nevertheless, to postulate that it plays a role in the worldwide progression of antibiotic resistance. Antimicrobial resistance should now be seen as an 'environmental pollutant', and new wastewater treatment processes must be assessed for their capability in eliminating ARB, especially from hospital effluents.201626944903
499060.9999From soil to surface water: exploring Klebsiella 's clonal lineages and antibiotic resistance odyssey in environmental health. In the last decade, the presence of resistant bacteria and resistance genes in the environment has been a cause for increasing concern. However, understanding of its contribution to the spread of bacteria remains limited, as the scarcity of studies on how and under what circumstances the environment facilitates the development of resistance poses challenges in mitigating the emergence and spread of mobile resistance factors. Antimicrobial resistance in the environment is considered one of the biggest challenges and threats currently emerging. Thus, monitoring the presence of antibiotic-resistant species, in this particular case, Klebsiella spp., in the environment can be an added value for understanding the epidemiology of infections caused by Klebsiella spp.. Investigating soils and waters as potential reservoirs and transmission vehicles for these bacteria is imperative. Therefore, in this review, we aimed to describe the main genetic lineages present in environmental samples, as well as to describe the multidrug resistance strains associated with each environmental source. The studies analyzed in this review reported a high diversity of species and strains of Klebsiella spp. in the environment. K. pneumoniae was the most prevalent species, both in soil and water samples, and, as expected, often presented a multi-resistant profile. The presence of K. pneumoniae ST11, ST15, and ST147 suggests human and animal origin. Concerning surface waters, there was a great diversity of species and STs of Klebsiella spp. These studies are crucial for assessing the environmental contribution to the spread of pathogenic bacteria.202540012032
499370.9999The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. The natural aquatic environment is a significant contributor to the development and circulation of clinically significant antibiotic resistance genes (ARGs). The potential for the aquatic environment to act as a reservoir for ARG accumulation in areas receiving anthropogenic contamination has been thoroughly researched. However, the emergence of novel ARGs in the absence of external influences, as well as the capacity of environmental bacteria to disseminate ARGs via mobile genetic elements remain relatively unchallenged. In order to address these knowledge gaps, this scoping literature review was established focusing on the detection of two important and readily mobile ARGs, namely, extended spectrum beta-lactamase (ESBL) and carbapenemase genes. This review included 41 studies from 19 different countries. A range of different water bodies including rivers (n = 26), seawaters (n = 6) and lakes (n = 3), amongst others, were analysed in the included studies. ESBL genes were reported in 29/41 (70.7%) studies, while carbapenemase genes were reported in 13/41 (31.7%), including joint reporting in 9 studies. The occurrence of mobile genetic elements was evaluated, which included the detection of integrons (n = 22), plasmids (n = 18), insertion sequences (n = 4) and transposons (n = 3). The ability of environmental bacteria to successfully transfer resistance genes via conjugation was also examined in 11 of the included studies. The findings of this scoping review expose the presence of clinically significant ARGs in the natural aquatic environment and highlights the potential ability of environmental isolates to disseminate these genes among different bacterial species. As such, the results presented demonstrate how anthropogenic point discharges may not act as the sole contributor to the development and spread of clinically significant antibiotic resistances. A number of critical knowledge gaps in current research were also identified. Key highlights include the limited number of studies focusing on antibiotic resistance in uncontaminated aquatic environments as well as the lack of standardisation among methodologies of reviewed investigations.202032438141
656980.9998Unveiling Rare Pathogens and Antibiotic Resistance in Tanzanian Cholera Outbreak Waters. The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health.202337894148
388790.9998Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., "reporting the water bacterial community composition", "resistance to antibiotics", and "antibiotic resistance genes (ARG)", were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.202133673692
6549100.9998A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.202540278579
6604110.9998The spread of antimicrobial resistance in the aquatic environment from faecal pollution: a scoping review of a multifaceted issue. Antimicrobial resistance (AMR) is a major global health concern accelerated by the misuse and mismanagement of antibiotics in clinical and veterinary settings, leading to longer treatment times, increased costs and greater mortality rates. The environment can play a major role as a source and disseminator of AMR, with faecal pollution, from both anthropogenic and non-anthropogenic sources making a significant contribution. The review aimed to identify how faecal pollution contributes to AMR in surface water, focusing on current methods of source tracking faecal pollution. The databases used were Medline Ovid® and Scopus. From the search, 744 papers from January 2020 to November 2023 were identified, and after the screening, 33 papers were selected that reported on AMR, aquatic environments and faecal pollution and were published in English. The studies were from six different continents, most were from Europe and Asia indicating faecal pollution is influenced by spatiotemporal differences such as population and sanitation infrastructure. Multiple different methodologies were used with a lack of standardised methods making comparability challenging. All studies identified AMR strains of faecal indicator bacteria showing resistance to a wide variety of antibiotics, particularly beta-lactams and tetracyclines. Few studies investigated mobile gene elements with class 1 integrons being the most frequently studied. Wastewater treatment plants were significant contributors, releasing large amounts of AMR bacteria into the environment. Environmental factors such as seasonal differences, temperature, rainfall and UV exposure, along with local antibiotic usage influenced the local resistome. Animals, both wild and domestic, introduced antimicrobial resistance genes and potential pathogens into the aquatic environment. Overall, faecal pollution is a complicated issue with multiple factors contributing to and facilitating the spread of AMR. Standardisation of methods and surveillance, robust wastewater management and further research into AMR dissemination are needed to address the human health, animal health and environmental concerns.202540131552
6550120.9998Distribution of antibiotic resistance genes in the environment. The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990-2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the 'omics' tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.202134051569
3889130.9998Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.202540298543
4987140.9998The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. One Health field-based approaches are needed to connect the occurrence of antibiotics present in the environment with the presence of antibiotic resistance genes (ARGs) in Gram-negative bacteria that confer resistance to antibiotics important in for both veterinary and human health. Water samples from two Nebraska watersheds influenced by wastewater effluent and agricultural runoff were tested for the presence of antibiotics used in veterinary and human medicine. The water samples were also cultured to identify the bacteria present. Of those bacteria isolated, the Gram-negative rods capable of causing human infections had antimicrobial susceptibility testing and whole-genome sequencing (WGS) performed to identify ARGs present. Of the 211 bacterial isolates identified, 37 belonged to pathogenic genera known to cause human infections. Genes conferring resistance to beta-lactams, aminoglycosides, fosfomycins, and quinolones were the most frequently detected ARGs associated with horizontal gene transfer (HGT) in the watersheds. WGS also suggest recent HGT events involving ARGs transferred between watershed isolates and bacteria of human and animal origins. The results of this study demonstrate the linkage of antibiotics and bacterial ARGs present in the environment with potential human and/or veterinary health impacts. IMPORTANCE One health is a transdisciplinary approach to achieve optimal health for humans, animals, plants and their shared environment, recognizing the interconnected nature of health in these domains. Field based research is needed to connect the occurrence of antibiotics used in veterinary medicine and human health with the presence of antibiotic resistance genes (ARGs). In this study, the presence of antibiotics, bacteria and ARGs was determined in two watersheds in Nebraska, one with agricultural inputs and the other with both agricultural and wastewater inputs. The results presented in this study provide evidence of transfer of highly mobile ARG between environment, clinical, and animal-associated bacteria.202235311538
4979150.9998Emerging threat: Antimicrobial resistance proliferation during epidemics - A case study of the SARS-CoV-2 pandemic in South Brazil. The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum β-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.202438581873
4986160.9998Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. Antibiotic resistance is a major 21(st) century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.202236466738
4989170.9998A closer look on the variety and abundance of the faecal resistome of wild boar. Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.202234710519
3888180.9998A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. PURPOSE OF REVIEW: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS: Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.202336821031
4988190.9998Oh, deer! How worried should we be about the diversity and abundance of the faecal resistome of red deer? The emergence of antimicrobial resistance (AMR) is a global threat to public health. Antimicrobials are used in animal production and human medicine, which contribute to the circulation of antibiotic resistance genes (ARGs) in the environment. Wildlife can be reservoirs of pathogens and resistant bacteria. Furthermore, anthropogenic pressure can influence their resistome. This work aimed to study the AMR of the faecal microbiome of red deer, one of the most important game species in Europe. To this end, a high-throughput qPCR approach was employed to screen a high number of ARGs and the antimicrobial susceptibility of indicator bacteria was determined. Several genes that confer resistance to different classes of antibiotics were identified, with the most abundant being tetracycline ARGs. Other genes were also present that are considered current and future threats to human health, and some of these were relatively abundant. Multidrug-resistant E. coli and Enterococcus spp. were isolated, although the overall level of antibiotic resistance was low. These results highlight the pressing need to know the origin and transmission of AMR in wildlife. Thus, and considering the One Health concept, studies such as this one shows the need for surveillance programs to prevent the spread of drug-resistant strains and ARGs.202235151727