# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4968 | 0 | 1.0000 | Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds. | 2023 | 37007466 |
| 4967 | 1 | 0.9999 | Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected. | 2024 | 39434132 |
| 5737 | 2 | 0.9999 | Survey of Colistin Resistance in Commensal Bacteria from Penaeus vannamei Farms in China. Aquatic environments are important reservoirs for drug resistance. Aquatic foods may act as carriers to lead antibiotic-resistant commensal bacteria into the human gastrointestinal system, then contacting gut microbiota and spreading antibiotic resistance. Here, several shrimp farms were investigated to identify colistin resistance among commensal bacteria of aquaculture. A total of 884 (41.6%) colistin-resistant isolates were identified among 2126 strains. Electroporation demonstrated that colistin-resistant fragments were present in some commensal bacteria that could be transferred to other bacteria. Most of the resistant bacteria were Bacillus spp., with 69.3% of the Bacillus species exhibiting multiple drug resistance. Bacillus licheniformis was prevalent, with 58 strains identified that comprised six sequence types (ST) based on multilocus sequence typing. Whole-genome sequencing and comparisons with previous B. licheniformis genomes revealed a high degree of genomic similarity among isolates from different regions. Thus, this species is widely distributed, and this study provides new insights into global antibiotic-resistant characteristics of B. licheniformis. Sequence analyses further revealed some of these strains are even pathogenic and virulent, suggesting the antibiotic resistance and hazards of commensal bacteria in aquaculture should be considered. Considering the "One Health" perspective, improved monitoring of aquatic food is needed to prevent the spread of drug-resistant commensal bacteria from food-associated bacteria to humans. | 2023 | 37297388 |
| 5718 | 3 | 0.9999 | A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes bla(TEM-1) and bla(CTX-M-15), sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria. | 2024 | 39012117 |
| 4969 | 4 | 0.9999 | Comparative Genomic Analysis of Campylobacter Plasmids Identified in Food Isolates. Campylobacter is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of Campylobacter infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization. They serve as the main vectors for transferring genetic material and spreading resistance and virulence among bacteria. In this study, we identified 34 new plasmids from 43 C. jejuni and C. coli strains isolated from retail meat using long-read and short-read genome sequencing. Pangenomic analysis of the plasmid assemblies and reference plasmids from GenBank revealed five distinct groups, namely, pTet, pVir, mega plasmids (>80 kb), mid plasmids (~30 kb), and small plasmids (<6 kb). Pangenomic analysis identified the core and accessory genes in each group, indicating a high degree of genetic similarity within groups and substantial diversity between the groups. The pTet plasmids were linked to tetracycline resistance phenotypes in host strains. The mega plasmids carry multiple genes (e.g., aph(3')-III, type IV and VI secretion systems, and type II toxin-antitoxin systems) important for plasmid mobilization, virulence, antibiotic resistance, and the persistence of Campylobacter. Together, the identification and comprehensive genetic characterization of new plasmids from Campylobacter food isolates contributes to understanding the mechanisms of gene transfer, particularly the spread of genetic determinants of virulence and antibiotic resistance in this important pathogen. | 2025 | 39858976 |
| 4965 | 5 | 0.9999 | Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla (OXA-493) and bla (OXA-576) genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla (OXA-493) gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria. | 2020 | 33042043 |
| 4966 | 6 | 0.9999 | Whole Genome Analysis of 335 New Bacterial Species from Human Microbiota Reveals a Huge Reservoir of Transferable Antibiotic Resistance Determinants. BACKGROUND: The emergence and diffusion of strains of pathogenic bacteria resistant to antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the human microbiota, which require special monitoring in the fight against antimicrobial resistance. METHODS: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate its whole range of ARGs using the BLAST program against ARGs reference databases. RESULTS: We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution: 264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 β-lactamases, 58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore, evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving mobile genetic elements such as transposase and plasmid. We identified many ARGs that may represent new variants in fosfomycin and β-lactams resistance. CONCLUSION: These findings show that new bacterial species from human microbiota should be considered as an important reservoir of ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential are required to improve our understanding of the functional role of this bacterial community in the development of antibiotic resistance. | 2022 | 35216256 |
| 1977 | 7 | 0.9998 | Comparative Genomics of Emerging Lineages and Mobile Resistomes of Contemporary Broiler Strains of Salmonella Infantis and E. coli. INTRODUCTION: Commensal and pathogenic strains of multidrug-resistant (MDR) Escherichia coli and non-typhoid strains of Salmonella represent a growing foodborne threat from foods of poultry origin. MDR strains of Salmonella Infantis and E. coli are frequently isolated from broiler chicks and the simultaneous presence of these two enteric bacterial species would potentially allow the exchange of mobile resistance determinants. OBJECTIVES: In order to understand possible genomic relations and to obtain a first insight into the potential interplay of resistance genes between enteric bacteria, we compared genomic diversity and mobile resistomes of S. Infantis and E. coli from broiler sources. RESULTS: The core genome MLST analysis of 56 S. Infantis and 90 E. coli contemporary strains revealed a high genomic heterogeneity of broiler E. coli. It also allowed the first insight into the genomic diversity of the MDR clone B2 of S. Infantis, which is endemic in Hungary. We also identified new MDR lineages for S. Infantis (ST7081 and ST7082) and for E. coli (ST8702 and ST10088). Comparative analysis of antibiotic resistance genes and plasmid types revealed a relatively narrow interface between the mobile resistomes of E. coli and S. Infantis. The mobile resistance genes tet(A), aadA1, and sul1 were identified at an overall high prevalence in both species. This gene association is characteristic to the plasmid pSI54/04 of the epidemic clone B2 of S. Infantis. Simultaneous presence of these genes and of IncI plasmids of the same subtype in cohabitant caecal strains of E. coli and S. Infantis suggests an important role of these plasmid families in a possible interplay of resistance genes between S. Infantis and E. coli in broilers. CONCLUSION: This is the first comparative genomic analysis of contemporary broiler strains of S. Infantis and E. coli. The diversity of mobile resistomes suggests that commensal E. coli could be potential reservoirs of resistance for S. Infantis, but so far only a few plasmid types and mobile resistance genes could be considered as potentially exchangeable between these two species. Among these, IncI1 plasmids could make the greatest contribution to the microevolution and genetic interaction between E. coli and S. Infantis. | 2021 | 33717039 |
| 1972 | 8 | 0.9998 | Draft Genome Sequences of Multidrug-Resistant Escherichia coli Isolated from River Water. The spread of antibiotic resistance poses a critical challenge worldwide. Contaminated environments can become reservoirs, spreading antibiotic-resistant bacteria and genetic determinants of resistance to humans directly or indirectly. Here, we report the draft genome sequence, the resistome, virulence genes, and sequence types of seven multidrug-resistant Escherichia coli strains isolated from river water. | 2022 | 36222705 |
| 5734 | 9 | 0.9998 | Escherichia coli Strains Originating from Raw Sheep Milk, with Special Reference to Their Genomic Characterization, Such as Virulence Factors (VFs) and Antimicrobial Resistance (AMR) Genes, Using Whole-Genome Sequencing (WGS). The objective of this work was to deliver a comprehensive genetic characterization of a collection of E. coli strains isolated from raw sheep milk. To complete our purpose, the technique of whole-genome sequencing, coupled with bioinformatics and phenotypic characterization of antimicrobial resistance, was performed. These Gram-negative, facultative anaerobic bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Shigella spp. and Salmonella spp. Genetic analysis was carried out on all strains (phylogram, sequence types, VFs, AMR genes, and pangenome). The results showed the presence of various genetic traits that are related to virulence factors contributing to their pathogenic potential. In addition, genes conferring resistance to antibiotics were also detected and confirmed using phenotypic tests. Finally, the genome of the E. coli strains was characterized by the presence of several mobile genetic elements, thus facilitating the exchange of various genetic elements, associated with virulence and antimicrobial resistance, within and beyond the species, through horizontal gene transfer. Contaminated raw sheep milk with pathogenic E. coli strains is particularly alarming for cheese production in artisan dairies. | 2025 | 40872695 |
| 4518 | 10 | 0.9998 | Resistome, Mobilome and Virulome Analysis of Shewanella algae and Vibrio spp. Strains Isolated in Italian Aquaculture Centers. Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest. | 2020 | 32326629 |
| 4955 | 11 | 0.9998 | Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. Multidrug resistance in gram-negative bacteria appears to be primarily the result of the acquisition of resistance genes by horizontal transfer. To what extent horizontal transfer may be responsible for the emergence of multidrug resistance in a clinical setting, however, has rarely been investigated. Therefore, the integron contents of isolates collected during a nosocomial outbreak of genotypically unrelated multidrug-resistant Enterobacteriaceae were characterized. The integron was chosen as a marker of transfer because of its association with multiresistance. Some genotypically identical isolates harbored different integrons. Grouping patients carrying the same integron yielded 6 epidemiologically linked clusters, with each cluster representing a different integron. Several patients carried multiple species harboring the same integron. Conjugation experiments with these strains resulted in the transfer of complete resistance patterns at high frequencies (10(-2) to 10(-4)). These findings provide strong evidence that the horizontal transfer of resistance genes contributed largely to the emergence of multidrug-resistant Enterobacteriaceae in this clinical setting. | 2002 | 12089661 |
| 4609 | 12 | 0.9998 | The importance of integrons for development and propagation of resistance in Shigella: the case of Latin America. In Latin America, the disease burden of shigellosis is found to coexist with the rapid and rampant spread of resistance to commonly used antibiotics. The molecular basis of antibiotic resistance lies within genetic elements such as plasmids, transposons, integrons, genomic islands, etc., which are found in the bacterial genome. Integrons are known to acquire, exchange, and express genes within gene cassettes and it is hypothesized that they play a significant role in the transmission of multidrug resistance genes in several Gram-negative bacteria including Shigella. A few studies have described antibiotic resistance genes and integrons among multidrug resistant Shigella isolates found in Latin America. For example, in Brazil, Bolivia, Chile, Costa Rica and Peru, class 1 and class 2 integrons have been detected among multidrug resistant strains of Shigella; this phenomenon is more frequently observed in S. flexneri isolates that are resistant to trimethoprim, sulfamethoxazole, streptomycin, ampicillin, chloramphenicol, and tetracycline. The gene cassette sul2, which is frequently detected in Shigella strains resistant to the sulfonamides, suggests that the sulfonamide-resistant phenotype can be explained by the presence of the sul2 genes independent of the integron class detected. It is to be noted that sul3 was negative in all isolates analyzed in these studies. The high frequency of sulfonamide (as encoded by sul2) and trimethoprim resistance is likely to be a result of the recurrent use of trimethoprim sulfamethoxazole as a popular regimen for the treatment of shigellosis. The observed resistance profiles of Shigella strains confirm that ampicillin and trimethoprim-sulfamethoxazole are ineffective as therapeutic options. In-depth information regarding antibiotic resistance mechanism in this pathogen is needed in order to develop suitable intervention strategies. There is a pressing need for regional and local antimicrobial resistance profiling of Shigella to be included as a part of the public health strategy. | 2016 | 27528086 |
| 4549 | 13 | 0.9998 | Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry. | 2024 | 39441515 |
| 2565 | 14 | 0.9998 | Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators. | 2025 | 41001059 |
| 5006 | 15 | 0.9998 | Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance. | 2022 | 36726572 |
| 5736 | 16 | 0.9998 | Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. | 2025 | 40872636 |
| 4964 | 17 | 0.9998 | Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. Prophages are often involved in host survival strategies and contribute toward increasing the genetic diversity of the host genome. Prophages also drive horizontal propagation of various genes as vehicles. However, there are few retrospective studies contributing to the propagation of antimicrobial resistance (AMR) and virulence factor (VF) genes by prophage. We extracted the complete genome sequences of seven pathogens, including ESKAPE bacteria and Escherichia coli from a public database, and examined the distribution of both the AMR and VF genes in prophage-like regions. We found that the ratios of AMR and VF genes greatly varied among the seven species. More than 70% of Enterobacter cloacae strains had VF genes, but only 1.2% of Klebsiella pneumoniae strains had VF genes from prophages. AMR and VF genes are unlikely to exist together in the same prophage region except in E. coli and Staphylococcus aureus, and the distribution patterns of prophage types containing AMR genes are distinct from those of VF gene-carrying prophage types. AMR genes in the prophage were located near transposase and/or integrase. The prophage containing class 1 integrase possessed a significantly greater number of AMR genes than did prophages with no class 1 integrase. The results of this study present a comprehensive picture of AMR and VF genes present within, or close to, prophage-like elements and different prophage patterns between AMR- or VF-encoding prophage-like elements. IMPORTANCE Although we believe phages play an important role in horizontal gene transfer in exchanging genetic material, we do not know the distribution of the antimicrobial resistance (AMR) and/or virulence factor (VF) genes in prophages. We collected different prophage elements from the complete genome sequences of seven species-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli-and characterized the distribution of antimicrobial resistance and virulence genes located in the prophage region. While virulence genes in prophage were species specific, antimicrobial resistance genes in prophages were highly conserved in various species. An integron structure was detected within specific prophage regions such as P1-like prophage element. Maximum of 10 antimicrobial resistance genes were found in a single prophage region, suggesting that prophages act as a reservoir for antimicrobial resistance genes. The results of this study show the different characteristic structures between AMR- or VF-encoding prophages. | 2021 | 34232073 |
| 5717 | 18 | 0.9998 | Introduction of the transmissible mobile colistin resistance genes mcr-3 and mcr-9 to the USA via imported seafood. The emergence and global dissemination of the mobile colistin resistance genes (mcr) threaten the efficacy of colistin, a high-priority, critically important antibiotic that is used to treat complicated infections with multidrug-resistant Gram-negative bacteria in humans. The occurrence of mcr in the USA has been suggested to be relatively limited, particularly in bacteria associated with domestic foods and food animals. This is because colistin has neither been marketed nor approved for use in agriculture in the USA. However, mcr-carrying bacteria can occur on foods imported from countries where these genes might be relatively more prevalent. Yet, studies on mcr in vulnerable imported foods in the USA are lacking. To address this gap in knowledge, we assessed the role of imported seafood as a potential carrier of mcr genes to the USA. Imported seafood samples were aseptically collected from eight major retail stores across Georgia, USA. In-depth analyses revealed the occurrence of mcr-9 in bacteria isolated from imported shrimp samples. The mcr-9-carrying bacteria were identified as Serratia nevei, a newly described species that belongs to the Serratia marcescens complex. The mcr-9 in the S. nevei isolates was carried on IncHI2 plasmids that were transferable and conferred colistin resistance to naïve Escherichia coli. Further analysis identified a chromosomal mcr-3.17 in Aeromonas salmonicida isolated from imported scallops. All the mcr-carrying isolates harbored other important antibiotic resistance genes. Taken together, our data showed that imported seafood, specifically shrimps, might be an overlooked source contributing to the introduction and spread of transmissible colistin resistance genes in the USA. IMPORTANCE: Colistin, an important antibiotic, is used to treat certain bacterial infections in humans that can be severe and/or life-threatening. However, these bacteria can acquire the mobile colistin resistance (mcr) genes and become resistant to this antibiotic. Plasmid-borne mcr can jump between bacterial species, spreading in bacteria across a variety of hosts and niches. Therefore, monitoring the spread of mcr is critical to maintain the efficacy of colistin. In the USA, the occurrence of mcr in domestically produced food is thought to be limited. In this study, we showed that mcr can be carried into the USA by bacteria on imported seafood. A specific gene, mcr-9, was located on a plasmid that could be transferred to other bacteria. Therefore, imported seafood can be an overlooked source of mcr in the USA. It is important to monitor and assess mcr in imported seafood to control the proliferation of colistin resistance in the USA. | 2025 | 40622135 |
| 5744 | 19 | 0.9998 | Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. | 2016 | 27506509 |