# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4961 | 0 | 1.0000 | Draft genome of Serratia sp. R1 gives an insight into the antibiotic resistant genes against multiple antibiotics. BACKGROUND: Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. METHODS: Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. RESULTS: Sequencing resulted in 8.4 Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. CONCLUSION: The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia. | 2022 | 35237932 |
| 4931 | 1 | 0.9998 | Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil. Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry. | 2024 | 38904697 |
| 4966 | 2 | 0.9998 | Whole Genome Analysis of 335 New Bacterial Species from Human Microbiota Reveals a Huge Reservoir of Transferable Antibiotic Resistance Determinants. BACKGROUND: The emergence and diffusion of strains of pathogenic bacteria resistant to antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the human microbiota, which require special monitoring in the fight against antimicrobial resistance. METHODS: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate its whole range of ARGs using the BLAST program against ARGs reference databases. RESULTS: We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution: 264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 β-lactamases, 58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore, evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving mobile genetic elements such as transposase and plasmid. We identified many ARGs that may represent new variants in fosfomycin and β-lactams resistance. CONCLUSION: These findings show that new bacterial species from human microbiota should be considered as an important reservoir of ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential are required to improve our understanding of the functional role of this bacterial community in the development of antibiotic resistance. | 2022 | 35216256 |
| 4967 | 3 | 0.9998 | Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected. | 2024 | 39434132 |
| 3401 | 4 | 0.9998 | Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. Pseudomonas aeruginosa is an opportunistic pathogen, which can have several virulence factors that confer on it the ability to cause severe, acute and chronic infections. Thus, the simultaneous occurrence of resistance to antibiotics and heavy metals associated with the presence of virulence genes is a potential threat to human health and environmental balance. This study aimed to investigate the resistance profile to heavy metals and the correlation of this phenotype of resistance to antimicrobials and to investigate the pathogenic potential of 46 P. aeruginosa isolates obtained from the soil of five Brazilian regions. The bacteria were evaluating for antimicrobial and heavy metal resistance, as well as the presence of plasmids and virulence genes. The isolates showed resistance to four different antibiotics and the majority (n = 44) had resistance to aztreonam or ticarcillin, furthermore, 32 isolates showed concomitant resistance to both of these antibiotics. A high prevalence of virulence genes was found, which highlights the pathogenic potential of the studied environmental isolates. Moreover, a high frequency of heavy metal resistance genes was also detected, however, the phenotypic results indicated that other genes and/or mechanisms should be related to heavy metal resistance. | 2016 | 27197940 |
| 4963 | 5 | 0.9998 | Comprehensive Genomic Analysis of Uropathogenic E. coli: Virulence Factors, Antimicrobial Resistance, and Mobile Genetic Elements. Our whole-genome sequencing analysis of sixteen uropathogenic E. coli isolates revealed a concerning picture of multidrug resistance and potentially virulent bacteria. All isolates belonged to four distinct clonal groups, with the highly prevalent ST131 lineage being associated with extensive antibiotic resistance and virulence factors. Notably, all isolates exhibited multidrug resistance, with some resistant to as many as 12 antibiotics. Fluoroquinolone resistance stemmed primarily from efflux pumps and mutations in gyrase and topoisomerase genes. Additionally, we identified genes encoding resistance to extended-spectrum cephalosporins, trimethoprim/sulfamethoxazole, and various heavy metals. The presence of diverse plasmids and phages suggests the potential for horizontal gene transfer and the dissemination of virulence factors. All isolates harbored genomic islands containing virulence factors associated with adhesion, biofilm formation, and invasion. Genes essential for iron acquisition, flagella biosynthesis, secretion systems, and toxin production were also prevalent. Adding further complexity to understanding the isolates' genetic makeup, we identified CRISPR-Cas systems. This study underscores the need for continued genomic surveillance in understanding the pathogenic mechanisms and resistance profiles of uropathogenic E. coli to aid in developing targeted therapeutic strategies. | 2024 | 39338985 |
| 4960 | 6 | 0.9998 | Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. OBJECTIVES: The cystic fibrosis (CF) airway is now considered the site of a complex microbiota, where cross-talking between microbes and lateral gene transfer are believed to contribute to the adaptation of bacteria to this specific environment and to the emergence of multidrug-resistant bacteria. The objective of this study was to retrieve and analyse specific sequences associated with antimicrobial resistance from the CF viromes database. METHODS: Specific sequences from CF metagenomic studies related to the 'antibiotic and toxic compound resistance' dataset were retrieved from the MG-RAST web site, assembled and functionally annotated for identification of the genes. Phylogenetic trees were constructed using a minimum parsimony starting tree topology search strategy. RESULTS: Overall, we found 1031 short sequences in the CF virome putatively encoding resistance to antimicrobials versus only 3 reads in the non-CF virome dataset (P = 0.001). Among them, we could confidently identify 66 efflux pump genes, 15 fluoroquinolone resistance genes and 9 β-lactamase genes. Evolutionary relatedness determined using phylogenetic information demonstrates the different origins of these genes among the CF microbiota. Interestingly, among annotated sequences within CF viromes, we also found matching 16S rDNA sequences from Escherichia, Cyanobacteria and Bacteroidetes. CONCLUSIONS: Our results suggest that phages in the CF sputum microbiota represent a reservoir of mobilizable genes associated with antimicrobial resistance that may spread in this specific niche. This phenomenon could explain the fantastic adaptation of CF strains to their niche and may represent a new potential therapeutic target to prevent the emergence of multidrug-resistant bacteria, which are responsible for most of the deaths in CF. | 2011 | 21816767 |
| 3475 | 7 | 0.9998 | Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE: Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health. | 2024 | 39513706 |
| 4964 | 8 | 0.9998 | Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. Prophages are often involved in host survival strategies and contribute toward increasing the genetic diversity of the host genome. Prophages also drive horizontal propagation of various genes as vehicles. However, there are few retrospective studies contributing to the propagation of antimicrobial resistance (AMR) and virulence factor (VF) genes by prophage. We extracted the complete genome sequences of seven pathogens, including ESKAPE bacteria and Escherichia coli from a public database, and examined the distribution of both the AMR and VF genes in prophage-like regions. We found that the ratios of AMR and VF genes greatly varied among the seven species. More than 70% of Enterobacter cloacae strains had VF genes, but only 1.2% of Klebsiella pneumoniae strains had VF genes from prophages. AMR and VF genes are unlikely to exist together in the same prophage region except in E. coli and Staphylococcus aureus, and the distribution patterns of prophage types containing AMR genes are distinct from those of VF gene-carrying prophage types. AMR genes in the prophage were located near transposase and/or integrase. The prophage containing class 1 integrase possessed a significantly greater number of AMR genes than did prophages with no class 1 integrase. The results of this study present a comprehensive picture of AMR and VF genes present within, or close to, prophage-like elements and different prophage patterns between AMR- or VF-encoding prophage-like elements. IMPORTANCE Although we believe phages play an important role in horizontal gene transfer in exchanging genetic material, we do not know the distribution of the antimicrobial resistance (AMR) and/or virulence factor (VF) genes in prophages. We collected different prophage elements from the complete genome sequences of seven species-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli-and characterized the distribution of antimicrobial resistance and virulence genes located in the prophage region. While virulence genes in prophage were species specific, antimicrobial resistance genes in prophages were highly conserved in various species. An integron structure was detected within specific prophage regions such as P1-like prophage element. Maximum of 10 antimicrobial resistance genes were found in a single prophage region, suggesting that prophages act as a reservoir for antimicrobial resistance genes. The results of this study show the different characteristic structures between AMR- or VF-encoding prophages. | 2021 | 34232073 |
| 4930 | 9 | 0.9998 | Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone. | 2018 | 29617860 |
| 4929 | 10 | 0.9998 | Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. The incidence of multidrug-resistant Acinetobacter baumannii has posed a major challenge for clinical treatment. There is still a significant gap in understanding the mechanism causing multi-drug resistance (MDR). In this study, the genomes of 10 drug sensitive and 10 multi-drug resistant A.baumannii strains isolated from a hospital in China were sequenced and compared. The antibiotic resistance genes, virulence factors were determined and CRIPSR-Cas system along with prophages were detected. The results showed that MDR strains are significantly different from the drug sensitive strains in the CARD entries, patterns of sequences matching up to plasmids, VFDB entries and CRISPR-Cas system. MDR strains contain unique CARD items related to antibiotic resistance which are absent in sensitive strains. Furthermore, sequences from genomes of MDR strains can match up with plasmids from more diversified bacteria genera compared to drug sensitive strains. MDR strains also contain a lower level of CRISPR genes and larger amount of prophages, along with higher levels of spacer sequences. These findings provide new experimental evidences for the study of the antibiotic resistance mechanism of A. baumannii. | 2022 | 35307599 |
| 3358 | 11 | 0.9998 | Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments. | 2021 | 33515651 |
| 4641 | 12 | 0.9998 | Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis. | 2023 | 36781180 |
| 4630 | 13 | 0.9998 | Genome Analysis of the Enterococcus faecium Entfac.YE Prophage. BACKGROUND: Bacteriophages are viruses that infect bacteria. Bacteriophages are widely distributed in various environments. The prevalence of bacteriophages in water sources, especially wastewaters, is naturally high. These viruses affect evolution of most bacterial species. Bacteriophages are able to integrate their genomes into the chromosomes of their hosts as prophages and hence transfer resistance genes to the bacterial genomes. Enterococci are commensal bacteria that show high resistance to common antibiotics. For example, prevalence of vancomycin-resistant enterococci has increased within the last decades. METHODS: Enterococcal isolates were isolated from clinical samples and morphological, phenotypical, biochemical, and molecular methods were used to identify and confirm their identity. Bacteriophages extracted from water sources were then applied to isolated Enterococcus faecium (E. faecium). In the next step, the bacterial genome was completely sequenced and the existing prophage genome in the bacterial genome was analyzed. RESULTS: In this study, E. faecium EntfacYE was isolated from a clinical sample. The EntfacYE genome was analyzed and 88 prophage genes were identified. The prophage content included four housekeeping genes, 29 genes in the group of genes related to replication and regulation, 25 genes in the group of genes related to structure and packaging, and four genes belonging to the group of genes associated with lysis. Moreover, 26 genes were identified with unknown functions. CONCLUSION: In conclusion, genome analysis of prophages can lead to a better understanding of their roles in the rapid evolution of bacteria. | 2022 | 35509366 |
| 3407 | 14 | 0.9998 | The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family. | 2013 | 23776501 |
| 1972 | 15 | 0.9998 | Draft Genome Sequences of Multidrug-Resistant Escherichia coli Isolated from River Water. The spread of antibiotic resistance poses a critical challenge worldwide. Contaminated environments can become reservoirs, spreading antibiotic-resistant bacteria and genetic determinants of resistance to humans directly or indirectly. Here, we report the draft genome sequence, the resistome, virulence genes, and sequence types of seven multidrug-resistant Escherichia coli strains isolated from river water. | 2022 | 36222705 |
| 5715 | 16 | 0.9998 | Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts. | 2024 | 38391535 |
| 3406 | 17 | 0.9998 | Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms. Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria-the potentially environmental and the potentially pathogenic-were isolated from both the wastewater influent and discharged effluent of a full-scale wastewater treatment plant and characterized by whole genome sequencing and antibiotic susceptibility testing. Among the potentially environmental isolates, there was no detection of any acquired antibiotic resistance genes, which supports the idea that their resistance mechanisms are mainly intrinsic. On the contrary, the potentially pathogenic isolates presented a broad diversity of acquired antibiotic resistance genes towards different antibiotic classes, especially β-lactams, aminoglycosides, and fluoroquinolones. All these bacteria showed multiple β-lactamase-encoding genes, some with carbapenemase activity, such as the bla(KPC)-type genes found in the Enterobacteriaceae isolates. The antibiotic susceptibility testing assays performed on these isolates also revealed that all had a multi-resistance phenotype, which indicates that the acquired resistance is their major antibiotic resistance mechanism. In conclusion, the two bacterial groups have distinct resistance mechanisms, which suggest that the antibiotic resistance in the environment can be a more complex problematic than that generally assumed. | 2021 | 34572700 |
| 4663 | 18 | 0.9998 | Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Ochrobactrum genus is comprised of soil-dwelling Gram-negative bacteria mainly reported for bioremediation of toxic compounds. Since last few years, mainly two species of this genus, O. intermedium and O. anthropi were documented for causing infections mostly in the immunocompromised patients. Despite such ubiquitous presence, study of adaptation in various niches is still lacking. Thus, to gain insights into the niche adaptation strategies, pan-genome analysis was carried out by comparing 67 genome sequences belonging to Ochrobactrum species. Pan-genome analysis revealed it is an open pan-genome indicative of the continuously evolving nature of the genus. The presence/absence of gene clusters also illustrated the unique presence of antibiotic efflux transporter genes and type IV secretion system genes in the clinical strains while the genes of solvent resistance and exporter pumps in the environmental strains. A phylogenomic investigation based on 75 core genes depicted better and robust phylogenetic resolution and topology than the 16S rRNA gene. To support the pan-genome analysis, individual genomes were also investigated for the mobile genetic elements (MGE), antibiotic resistance genes (ARG), metal resistance genes (MRG) and virulence factors (VF). The analysis revealed the presence of MGE, ARG, and MRG in all the strains which play an important role in the species evolution which is in agreement with the pan-genome analysis. The average nucleotide identity (ANI) based on the genetic relatedness between the Ochrobactrum species indicated a distinction between individual species. Interestingly, the ANI tool was able to classify the Ochrobactrum genomes to the species level which were assigned till the genus level on the NCBI database. | 2020 | 32428556 |
| 5737 | 19 | 0.9998 | Survey of Colistin Resistance in Commensal Bacteria from Penaeus vannamei Farms in China. Aquatic environments are important reservoirs for drug resistance. Aquatic foods may act as carriers to lead antibiotic-resistant commensal bacteria into the human gastrointestinal system, then contacting gut microbiota and spreading antibiotic resistance. Here, several shrimp farms were investigated to identify colistin resistance among commensal bacteria of aquaculture. A total of 884 (41.6%) colistin-resistant isolates were identified among 2126 strains. Electroporation demonstrated that colistin-resistant fragments were present in some commensal bacteria that could be transferred to other bacteria. Most of the resistant bacteria were Bacillus spp., with 69.3% of the Bacillus species exhibiting multiple drug resistance. Bacillus licheniformis was prevalent, with 58 strains identified that comprised six sequence types (ST) based on multilocus sequence typing. Whole-genome sequencing and comparisons with previous B. licheniformis genomes revealed a high degree of genomic similarity among isolates from different regions. Thus, this species is widely distributed, and this study provides new insights into global antibiotic-resistant characteristics of B. licheniformis. Sequence analyses further revealed some of these strains are even pathogenic and virulent, suggesting the antibiotic resistance and hazards of commensal bacteria in aquaculture should be considered. Considering the "One Health" perspective, improved monitoring of aquatic food is needed to prevent the spread of drug-resistant commensal bacteria from food-associated bacteria to humans. | 2023 | 37297388 |