Integron class 1 reservoir among highly resistant gram-negative microorganisms recovered at a Dutch teaching hospital. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
495401.0000Integron class 1 reservoir among highly resistant gram-negative microorganisms recovered at a Dutch teaching hospital. Integrons play an important role in the dissemination of resistance genes among bacteria. Nearly 70% of highly resistant gram-negative bacteria isolated at a tertiary care hospital harbored an integron. Epidemiologic analysis suggests that horizontal gene transfer is an important mechanism of resistance spread and has a greater contribution than cross-transmission to levels of resistance in settings where highly resistant gram-negative bacteria are endemic.200919719415
495510.9999Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. Multidrug resistance in gram-negative bacteria appears to be primarily the result of the acquisition of resistance genes by horizontal transfer. To what extent horizontal transfer may be responsible for the emergence of multidrug resistance in a clinical setting, however, has rarely been investigated. Therefore, the integron contents of isolates collected during a nosocomial outbreak of genotypically unrelated multidrug-resistant Enterobacteriaceae were characterized. The integron was chosen as a marker of transfer because of its association with multiresistance. Some genotypically identical isolates harbored different integrons. Grouping patients carrying the same integron yielded 6 epidemiologically linked clusters, with each cluster representing a different integron. Several patients carried multiple species harboring the same integron. Conjugation experiments with these strains resulted in the transfer of complete resistance patterns at high frequencies (10(-2) to 10(-4)). These findings provide strong evidence that the horizontal transfer of resistance genes contributed largely to the emergence of multidrug-resistant Enterobacteriaceae in this clinical setting.200212089661
495120.9999Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes.202439599474
495730.9999Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Fluoroquinolones resistance in bacteria can be due to chromosomal and plasmid-mediated mechanisms. Of growing concern is the acquisition of genes encoding quinolone resistance in combination with other resistance mechanisms such as extended-spectrum beta-lactamases. In this study we describe the identification of an isolate of Escherichia coli from cattle which carried qnrS1 in combination with a blaCTX-M gene, although they were not co-localised on the same plasmid. In addition, using a DNA array it was possible to identify several other antimicrobial resistance genes in this isolate. This is the first report of a qnr gene in E. coli from cattle in the UK and highlights the need for surveillance of these emerging resistance mechanisms.201120884136
257040.9999Metallo-beta-lactamase-producing Escherichia coli in the sewage of Mexico City: where do they come from? While monitoring the presence of antibiotic resistance in municipal wastewater bacteria from Mexico City, five Escherichia coli isolates were found to be resistant to carbapenems, antibiotics of "last resort" used mostly in hospitals. Further analysis revealed that these carbapenem-resistant isolates carried the gene encoding a metallo-beta-lactamase, NDM-5. The gene was found to be beared by a large, ∼145 kb conjugative plasmid, which also carries putative genes encoding resistance to sulfonamides, trimethoprim, tetracycline, ciprofloxacin, and chloramphenicol (although no phenotypic chloramphenicol resistance was detected) and quaternary-ammonium compounds. The plasmid also carried gene mobility determinants, such as integron integrase and two transposases. In addition to the direct public health threat posed by the presence of such multi-resistant organisms in wastewater released into the environment and used for crop irrigation; it is particularly concerning that carbapenem-resistant E. coli is rather rare in Mexican hospitals (<1%), but was found in small, 100 mL samples of municipal wastewater. This suggests that these organisms are under-reported by clinical microbiology laboratories, underlining the usefulness of wastewater monitoring, or that there is an unknown source of such carbapenem-resistant organisms that are being dumped into the wastewater. The source of these bacteria must be assessed and controlled to prevent further spread of this multi-resistance plasmid among other environmental and clinical microorganisms.202234662521
339350.9998Antibiotic resistance of gram-negative bacteria in rivers, United States. Bacteria with intrinsic resistance to antibiotics are found in nature. Such organisms may acquire additional resistance genes from bacteria introduced into soil or water, and the resident bacteria may be the reservoir or source of widespread resistant organisms found in many environments. We isolated antibiotic-resistant bacteria in freshwater samples from 16 U.S. rivers at 22 sites and measured the prevalence of organisms resistant to beta-lactam and non-beta-lactam antibiotics. Over 40% of the bacteria resistant to more than one antibiotic had at least one plasmid. Ampicillin resistance genes, as well as other resistance traits, were identified in 70% of the plasmids. The most common resistant organisms belonged to the following genera: Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Pseudomonas, and Serratia.200212095440
495360.9998MCR-5-Producing Colistin-Resistant Cupriavidus gilardii Strain from Well Water in Batna, Algeria. This paper presents the first description of the mcr-5.1 gene in a colistin-resistant Cupriavidus gilardii isolate from well water that supplies a maternity hospital in Algeria. The whole-genome sequence of this strain showed the presence of putative β-lactamase, aac(3)-IVa, and multidrug efflux pump-encoding genes, which could explain the observed multidrug resistance phenotype. Our findings are of great interest, as we highlight a potential contamination route for the spread of mcr genes. IMPORTANCE Colistin resistance mediated by mcr genes in Gram-negative bacteria has gained significant attention worldwide. This is due to the ability of these genes to be horizontally transferred between different bacterial genera and species. Aquatic environments have been suggested to play an important role in the emergence and spread of this resistance mechanism. Here, we describe the first report of an mcr-5-positive Cupriavidus gilardii aquatic isolate through its isolation from well water in Algeria. The significance of our study is in shedding the light on an important environmental reservoir of mcr genes.202134468167
192070.9998Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, bla(NDM,) and bla(OXA), respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.202438664636
191980.9998Combining Functional Genomics and Whole-Genome Sequencing to Detect Antibiotic Resistance Genes in Bacterial Strains Co-Occurring Simultaneously in a Brazilian Hospital. (1) Background: The rise of multi-antibiotic resistant bacteria represents an emergent threat to human health. Here, we investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive care unit in Brazil. (2) Methods: We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and plasmids in 34 strains of Gram-negative and Gram-positive bacteria, providing the first genomic description of Morganella morganii and Ralstonia mannitolilytica clinical isolates from South America. (3) Results: We identified a high abundance of beta-lactamase genes in resistant organisms, including seven extended-spectrum beta-lactamases (OXA-1, OXA-10, CTX-M-1, KPC, TEM, HYDRO, BLP) shared between organisms from different species. Additionally, we identified several ARG-carrying plasmids indicating the potential for a fast transmission of resistance mechanism between bacterial strains. Furthermore, we uncovered two pairs of (near) identical plasmids exhibiting multi-drug resistance. Finally, since many highly resistant strains carry several different ARGs, we used functional genomics to investigate which of them were indeed functional. In this sense, for three bacterial strains (Escherichia coli, Klebsiella pneumoniae, and M. morganii), we identified six beta-lactamase genes out of 15 predicted in silico as those mainly responsible for the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms in these organisms. (4) Conclusions: Systematic studies similar to the one presented here should help to prevent outbreaks of novel multidrug-resistant bacteria in healthcare facilities.202133920372
492290.9998Diversity and Genetic Basis for Carbapenem Resistance in a Coastal Marine Environment. Resistance to the "last-resort" antibiotics, such as carbapenems, has led to very few antibiotics being left to treat infections by multidrug-resistant bacteria. Spread of carbapenem resistance (CR) has been well characterized for the clinical environment. However, there is a lack of information about its environmental distribution. Our study reveals that CR is present in a wide range of Gram-negative bacteria in the coastal seawater environment, including four phyla, eight classes, and 30 genera. These bacteria were likely introduced into seawater via stormwater flows. Some CR isolates found here, such as Acinetobacter junii, Acinetobacter johnsonii, Brevundimonas vesicularis, Enterococcus durans, Pseudomonas monteilii, Pseudomonas fulva, and Stenotrophomonas maltophilia, are further relevant to human health. We also describe a novel metallo-β-lactamase (MBL) for marine Rheinheimera isolates with CR, which has likely been horizontally transferred to Citrobacter freundii or Enterobacter cloacae In contrast, another MBL of the New Delhi type was likely acquired by environmental Variovorax isolates from Escherichia coli, Klebsiella pneumoniae, or Acinetobacter baumannii utilizing a plasmid. Our findings add to the growing body of evidence that the aquatic environment is both a reservoir and a vector for novel CR genes.IMPORTANCE Resistance against the "last-resort" antibiotics of the carbapenem family is often based on the production of carbapenemases, and this has been frequently observed in clinical samples. However, the dissemination of carbapenem resistance (CR) in the environment has been less well explored. Our study shows that CR is commonly found in a range of bacterial taxa in the coastal aquatic environment and can involve the exchange of novel metallo-β-lactamases from typical environmental bacteria to potential human pathogens or vice versa. The outcomes of this study contribute to a better understanding of how aquatic and marine bacteria can act as reservoirs and vectors for CR outside the clinical setting.202032198174
4609100.9998The importance of integrons for development and propagation of resistance in Shigella: the case of Latin America. In Latin America, the disease burden of shigellosis is found to coexist with the rapid and rampant spread of resistance to commonly used antibiotics. The molecular basis of antibiotic resistance lies within genetic elements such as plasmids, transposons, integrons, genomic islands, etc., which are found in the bacterial genome. Integrons are known to acquire, exchange, and express genes within gene cassettes and it is hypothesized that they play a significant role in the transmission of multidrug resistance genes in several Gram-negative bacteria including Shigella. A few studies have described antibiotic resistance genes and integrons among multidrug resistant Shigella isolates found in Latin America. For example, in Brazil, Bolivia, Chile, Costa Rica and Peru, class 1 and class 2 integrons have been detected among multidrug resistant strains of Shigella; this phenomenon is more frequently observed in S. flexneri isolates that are resistant to trimethoprim, sulfamethoxazole, streptomycin, ampicillin, chloramphenicol, and tetracycline. The gene cassette sul2, which is frequently detected in Shigella strains resistant to the sulfonamides, suggests that the sulfonamide-resistant phenotype can be explained by the presence of the sul2 genes independent of the integron class detected. It is to be noted that sul3 was negative in all isolates analyzed in these studies. The high frequency of sulfonamide (as encoded by sul2) and trimethoprim resistance is likely to be a result of the recurrent use of trimethoprim sulfamethoxazole as a popular regimen for the treatment of shigellosis. The observed resistance profiles of Shigella strains confirm that ampicillin and trimethoprim-sulfamethoxazole are ineffective as therapeutic options. In-depth information regarding antibiotic resistance mechanism in this pathogen is needed in order to develop suitable intervention strategies. There is a pressing need for regional and local antimicrobial resistance profiling of Shigella to be included as a part of the public health strategy.201627528086
1918110.9998Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. The dissemination of antimicrobial resistance genes and the bacterium that harbor them have increasingly become a public concern, especially in low- and middle-income countries. The present study used whole-genome sequencing to analyze 10 KPC-2-producing Klebsiella pneumoniae isolates obtained from clinical specimens originated from Brazilian hospitals. The study documents a relevant "snapshot" of the presence of class 1 integrons in 90% of the strains presenting different gene cassettes (dfrA30, dfrA15, dfrA12, dfrA14, aadA1, aadA2, and aac(6')Iq), associated or not with transposons. Two strains presented nonclassical integron (lacking the normal 3'conserved segment). In general, most strains showed a complex resistome, characterizing them as highly resistant. Integrons, a genetically stable and efficient system, confer to bacteria as highly adaptive and low cost evolution potential to bacteria, even more serious when associated with high-risk clones, indicating an urgent need for control and prevention strategies to avoid the spread of resistance determinants in Brazil. Despite this, although the class 1 integron identified in the KPC-2-producing K. pneumoniae clones is important, our findings suggest that other elements probably have a greater impact on the spread of antimicrobial resistance, since many of these important genes were not related to this cassette.201931074706
1916120.9998Species Diversity of Environmental GIM-1-Producing Bacteria Collected during a Long-Term Outbreak. Reports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones of Enterobacter cloacae and Pseudomonas aeruginosa in a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43 blaGIM-1-carrying bacteria (mainly nonfermenters but also Enterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in two E. cloacae isolates with MICs above 256 mg/liter. The blaGIM-1 gene was harbored in 12 different class 1 integrons, some without the typical 3' end. The blaGIM-1 gene was localized on plasmids in five isolates. In vitro plasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a "melting pot" for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks. IMPORTANCE: In Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total "resistance gene pool" in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of the blaGIM-1 gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.201627060121
5699130.9998Presence of β-Lactamase Encoding Genes in Burkholderia cepacia Complex Isolated from Soil. Burkholderia cepacia complex has emerged as an important opportunistic bacteria group for immunocompromised patients, and it has a high level of intrinsic resistance for different antibiotic classes. Hydrolysis of β-lactam antibiotics by β-lactamases is the most common resistance mechanism in Gram-negative bacteria, and the presence of such enzymes complicates the selection of appropriate therapy. This study aimed at investigating the antimicrobial resistance profile and the presence of β-lactamase encoding genes in B. cepacia complex isolated from Brazilian soils. High-level ceftazidime resistance and several β-lactamase encoding genes were found, including the first report of bla(KPC) genes in bacteria isolated from soil.201828915359
4845140.9998The changing epidemiology of resistance. Antibiotic resistance is now a linked global problem. Dispersion of successful clones of multidrug resistant (MDR) bacteria is common, often via the movement of people. Local evolution of MDR bacteria is also important under the pressure of excessive antibiotic use, with horizontal gene transfer providing the means by which genes such as bla(CTX-M) spread amongst different bacterial species and strains. Beta-lactamase production is a common resistance mechanism in Gram-negative bacteria, and the rapid dissemination of novel genes reflects their evolution under the selective pressure of antibiotic usage. Many Enterobacteriaceae now carry broad-spectrum beta-lactamases such as CTX-M, with particular genotypes associated with different geographical regions. The spread of these enzymes has compromised the clinical utility of a number of beta-lactam classes and with the spread of genes such as bla(KPC), carbapenems may be increasingly compromised in the future. High-level fluoroquinolone resistance (mainly caused by gyrA mutations) has also been shown to be associated with CTX-M and CMY-type enzymes, commonly due to co-carriage on conjugative plasmids of the gene for the aminoglycoside-inactivating enzyme AAC-6(1)-Ib-cr and qnr genes (which confer low-level resistance), allowing the easy selection of gyrA mutants in the host strain. Resistance in Gram-positive bacteria is also widely distributed and increasing, with the emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) blurring the distinction between hospital and community strains. Antibiotic use and environmental factors all have a role in the emergence and spread of resistance. This article reviews some of the new mechanisms and recent trends in the global spread of MDR bacteria.200919675017
5717150.9998Introduction of the transmissible mobile colistin resistance genes mcr-3 and mcr-9 to the USA via imported seafood. The emergence and global dissemination of the mobile colistin resistance genes (mcr) threaten the efficacy of colistin, a high-priority, critically important antibiotic that is used to treat complicated infections with multidrug-resistant Gram-negative bacteria in humans. The occurrence of mcr in the USA has been suggested to be relatively limited, particularly in bacteria associated with domestic foods and food animals. This is because colistin has neither been marketed nor approved for use in agriculture in the USA. However, mcr-carrying bacteria can occur on foods imported from countries where these genes might be relatively more prevalent. Yet, studies on mcr in vulnerable imported foods in the USA are lacking. To address this gap in knowledge, we assessed the role of imported seafood as a potential carrier of mcr genes to the USA. Imported seafood samples were aseptically collected from eight major retail stores across Georgia, USA. In-depth analyses revealed the occurrence of mcr-9 in bacteria isolated from imported shrimp samples. The mcr-9-carrying bacteria were identified as Serratia nevei, a newly described species that belongs to the Serratia marcescens complex. The mcr-9 in the S. nevei isolates was carried on IncHI2 plasmids that were transferable and conferred colistin resistance to naïve Escherichia coli. Further analysis identified a chromosomal mcr-3.17 in Aeromonas salmonicida isolated from imported scallops. All the mcr-carrying isolates harbored other important antibiotic resistance genes. Taken together, our data showed that imported seafood, specifically shrimps, might be an overlooked source contributing to the introduction and spread of transmissible colistin resistance genes in the USA. IMPORTANCE: Colistin, an important antibiotic, is used to treat certain bacterial infections in humans that can be severe and/or life-threatening. However, these bacteria can acquire the mobile colistin resistance (mcr) genes and become resistant to this antibiotic. Plasmid-borne mcr can jump between bacterial species, spreading in bacteria across a variety of hosts and niches. Therefore, monitoring the spread of mcr is critical to maintain the efficacy of colistin. In the USA, the occurrence of mcr in domestically produced food is thought to be limited. In this study, we showed that mcr can be carried into the USA by bacteria on imported seafood. A specific gene, mcr-9, was located on a plasmid that could be transferred to other bacteria. Therefore, imported seafood can be an overlooked source of mcr in the USA. It is important to monitor and assess mcr in imported seafood to control the proliferation of colistin resistance in the USA.202540622135
5696160.9998Co-introduction of plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), increases fitness and virulence of bacterial host. BACKGROUND: Bacterial isolates with multiple plasmids harbouring different carbapenemase genes have emerged and been identified repeatedly, despite a general notion that plasmids confer fitness cost in bacterial host. In this study, we investigated the effects of plasmids with carbapenemase genes on the fitness and virulence of bacteria. METHODS: Different plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), were isolated from a carbapenem-resistant K. pneumoniae strain. Each plasmid was conjugated into the Escherichia coli strain DH5α, and a transconjugant with both plasmids was also obtained by transformation. Their in vitro competitive ability, biofilm formation, serum resistance, survival ability within macrophage and fruit fly, and fly killing ability were evaluated. RESULTS: The transconjugants with a single plasmid showed identical phenotypes to the plasmid-free strain, except that they decreased fly survival after infection. However, significantly increased fitness, virulence and biofilm production were observed consistently for the transconjugant with both plasmids, harbouring bla(NDM-1) and bla(OXA-232). CONCLUSIONS: Our data indicate that bacteria carrying multiple plasmids encoding different carbapenemases may have increased fitness and virulence, emphasizing the need for diverse strategies to combat antimicrobial resistance.202031900177
5978170.9998Evidences of gentamicin resistance amplification in Klebsiella pneumoniae isolated from faeces of hospitalized newborns. The intestinal microbiota, a barrier to the establishment of pathogenic bacteria, is also an important reservoir of opportunistic pathogens. It plays a key role in the process of resistance-genes dissemination, commonly carried by specialized genetic elements, like plasmids, phages, and conjugative transposons. We obtained from strains of enterobacteria, isolated from faeces of newborns in a university hospital nursery, indication of phenotypical gentamicin resistance amplification (frequencies of 10(-3) to 10(-5), compatible with transposition frequencies). Southern blotting assays showed strong hybridization signals for both plasmidial and chromosomal regions in DNA extracted from variants selected at high gentamicin concentrations, using as a probe a labeled cloned insert containing aminoglycoside modifying enzyme (AME) gene sequence originated from a plasmid of a Klebsiella pneumoniae strain previously isolated in the same hospital. Further, we found indications of inactivation to other resistance genes in variants selected under similar conditions, as well as, indications of co-amplification of other AME markers (amikacin). Since the intestinal environment is a scenario of selective processes due to the therapeutic and prophylactic use of antimicrobial agents, the processes of amplification of low level antimicrobial resistance (not usually detected or sought by common methods used for antibiotic resistance surveillance) might compromise the effectiveness of antibiotic chemotherapy.199910585658
3406180.9998Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms. Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria-the potentially environmental and the potentially pathogenic-were isolated from both the wastewater influent and discharged effluent of a full-scale wastewater treatment plant and characterized by whole genome sequencing and antibiotic susceptibility testing. Among the potentially environmental isolates, there was no detection of any acquired antibiotic resistance genes, which supports the idea that their resistance mechanisms are mainly intrinsic. On the contrary, the potentially pathogenic isolates presented a broad diversity of acquired antibiotic resistance genes towards different antibiotic classes, especially β-lactams, aminoglycosides, and fluoroquinolones. All these bacteria showed multiple β-lactamase-encoding genes, some with carbapenemase activity, such as the bla(KPC)-type genes found in the Enterobacteriaceae isolates. The antibiotic susceptibility testing assays performed on these isolates also revealed that all had a multi-resistance phenotype, which indicates that the acquired resistance is their major antibiotic resistance mechanism. In conclusion, the two bacterial groups have distinct resistance mechanisms, which suggest that the antibiotic resistance in the environment can be a more complex problematic than that generally assumed.202134572700
2507190.9998Epidemiology of resistance to diaminopyrimidines. Resistance to trimethoprim emerged in Enterobacteriaceae and later in other Gram-negative and Gram-positive bacteria within two years of the clinical introduction of the drug. Resistance is borne in many different replicons often present in multiply-resistant epidemic bacteria. The incidence of trimethoprim resistance is highly variable, depending upon methodology, type of patients, local epidemiology: this can be illustrated by the high variation of trimethoprim resistance among Salmonella, Shigella or MRSA in various countries and by the incidence of resistance in penicillin-resistant Streptococcus pneumoniae.19938195837