Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
495201.0000Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria(1). Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection(2,3). Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E. coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.201931235960
495110.9999Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes.202439599474
484620.9998Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. Antimicrobial resistance is one of the major threats to the health and welfare of both humans and animals. The shortage of new antimicrobial agents has led to the re-evaluation of old antibiotics such as fosfomycin as a potential regimen for treating multidrug-resistant bacteria especially extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Fosfomycin is a broad-spectrum bactericidal antibiotic that inhibits the initial step of the cell wall biosynthesis. Fosfomycin resistance can occur due to mutation in the drug uptake system or by the acquisition of fosfomycin-modifying enzymes. In this review, we focus on mobile fosfomycin-resistant genes encoding glutathione-S-transferase which are mainly responsible for fosfomycin resistance in Enterobacteriaceae, that is, fosA and its subtypes, fosC2, and the recently described fosL1-L2. We summarized the proposed origins of the different resistance determinants and highlighted the different plasmid types which are attributed to the dissemination of fosfomycin-modifying enzymes. Thereby, IncF and IncN plasmids play a predominant role. The detection of mobile fosfomycin-resistant genes in Enterobacteriaceae has increased in recent years. Similar to the situation in (East) Asia, the most frequently detected fosfomycin-resistant gene in Europe is fosA3. Mobile fosfomycin-resistant genes have been detected in isolates of human, animal, food, and environmental origin which leads to a growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, at the human-animal-environment interface.202033128341
495730.9998Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Fluoroquinolones resistance in bacteria can be due to chromosomal and plasmid-mediated mechanisms. Of growing concern is the acquisition of genes encoding quinolone resistance in combination with other resistance mechanisms such as extended-spectrum beta-lactamases. In this study we describe the identification of an isolate of Escherichia coli from cattle which carried qnrS1 in combination with a blaCTX-M gene, although they were not co-localised on the same plasmid. In addition, using a DNA array it was possible to identify several other antimicrobial resistance genes in this isolate. This is the first report of a qnr gene in E. coli from cattle in the UK and highlights the need for surveillance of these emerging resistance mechanisms.201120884136
991240.9998Comprehensive Genomic Investigation of Coevolution of mcr genes in Escherichia coli Strains via Nanopore Sequencing. Horizontal gene transfer facilitates the spread of antibiotic resistance genes, which constitutes a global challenge. However, the evolutionary trajectory of the mobile colistin resistome in bacteria is largely unknown. To investigate the coevolution and fitness cost of the colistin resistance genes in wild strains, different assays to uncover the genomic dynamics of mcr-1 and mcr-3 in bacterial populations are utilized. Escherichia coli strains harboring both mcr-1 and mcr-3.1/3.5 are isolated and mcr genes are associated with diverse mobile elements. Under exposure to colistin, the mcr-1-bearing resistome is stably inherited during bacterial replication, but mcr-3 is prone to be eliminated in populations of certain strains. In the absence of colistin, the persistence rates of the mcr-1 and mcr-3-bearing subclones varies depending on the genomic background. The decay of the mcr-bearing bacterial populations can be mediated by the elimination of mcr-containing segments, large genomic deletions, and plasmid loss. Mobile elements, including plasmids and transposons, are double-edged swords in the evolution of the resistome. The findings support the idea that antibiotic overuse accounts for global spread of multidrug-resistant (MDR) bacteria. Therefore, stringent regulation of antibiotic prescription for humans and animals should be performed systematically to alleviate the threat of MDR bacteria.202133728052
571750.9998Introduction of the transmissible mobile colistin resistance genes mcr-3 and mcr-9 to the USA via imported seafood. The emergence and global dissemination of the mobile colistin resistance genes (mcr) threaten the efficacy of colistin, a high-priority, critically important antibiotic that is used to treat complicated infections with multidrug-resistant Gram-negative bacteria in humans. The occurrence of mcr in the USA has been suggested to be relatively limited, particularly in bacteria associated with domestic foods and food animals. This is because colistin has neither been marketed nor approved for use in agriculture in the USA. However, mcr-carrying bacteria can occur on foods imported from countries where these genes might be relatively more prevalent. Yet, studies on mcr in vulnerable imported foods in the USA are lacking. To address this gap in knowledge, we assessed the role of imported seafood as a potential carrier of mcr genes to the USA. Imported seafood samples were aseptically collected from eight major retail stores across Georgia, USA. In-depth analyses revealed the occurrence of mcr-9 in bacteria isolated from imported shrimp samples. The mcr-9-carrying bacteria were identified as Serratia nevei, a newly described species that belongs to the Serratia marcescens complex. The mcr-9 in the S. nevei isolates was carried on IncHI2 plasmids that were transferable and conferred colistin resistance to naïve Escherichia coli. Further analysis identified a chromosomal mcr-3.17 in Aeromonas salmonicida isolated from imported scallops. All the mcr-carrying isolates harbored other important antibiotic resistance genes. Taken together, our data showed that imported seafood, specifically shrimps, might be an overlooked source contributing to the introduction and spread of transmissible colistin resistance genes in the USA. IMPORTANCE: Colistin, an important antibiotic, is used to treat certain bacterial infections in humans that can be severe and/or life-threatening. However, these bacteria can acquire the mobile colistin resistance (mcr) genes and become resistant to this antibiotic. Plasmid-borne mcr can jump between bacterial species, spreading in bacteria across a variety of hosts and niches. Therefore, monitoring the spread of mcr is critical to maintain the efficacy of colistin. In the USA, the occurrence of mcr in domestically produced food is thought to be limited. In this study, we showed that mcr can be carried into the USA by bacteria on imported seafood. A specific gene, mcr-9, was located on a plasmid that could be transferred to other bacteria. Therefore, imported seafood can be an overlooked source of mcr in the USA. It is important to monitor and assess mcr in imported seafood to control the proliferation of colistin resistance in the USA.202540622135
495560.9998Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. Multidrug resistance in gram-negative bacteria appears to be primarily the result of the acquisition of resistance genes by horizontal transfer. To what extent horizontal transfer may be responsible for the emergence of multidrug resistance in a clinical setting, however, has rarely been investigated. Therefore, the integron contents of isolates collected during a nosocomial outbreak of genotypically unrelated multidrug-resistant Enterobacteriaceae were characterized. The integron was chosen as a marker of transfer because of its association with multiresistance. Some genotypically identical isolates harbored different integrons. Grouping patients carrying the same integron yielded 6 epidemiologically linked clusters, with each cluster representing a different integron. Several patients carried multiple species harboring the same integron. Conjugation experiments with these strains resulted in the transfer of complete resistance patterns at high frequencies (10(-2) to 10(-4)). These findings provide strong evidence that the horizontal transfer of resistance genes contributed largely to the emergence of multidrug-resistant Enterobacteriaceae in this clinical setting.200212089661
502370.9998Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOS(R)) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOS(R) type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.202337469601
500380.9998Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.202134364270
486190.9998The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria.202133913748
1585100.9998Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Tigecycline is a last-resort antibiotic that is used to treat severe infections caused by extensively drug-resistant bacteria. tet(X) has been shown to encode a flavin-dependent monooxygenase that modifies tigecycline(1,2). Here, we report two unique mobile tigecycline-resistance genes, tet(X3) and tet(X4), in numerous Enterobacteriaceae and Acinetobacter that were isolated from animals, meat for consumption and humans. Tet(X3) and Tet(X4) inactivate all tetracyclines, including tigecycline and the newly FDA-approved eravacycline and omadacycline. Both tet(X3) and tet(X4) increase (by 64-128-fold) the tigecycline minimal inhibitory concentration values for Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. In addition, both Tet(X3) (A. baumannii) and Tet(X4) (E. coli) significantly compromise tigecycline in in vivo infection models. Both tet(X3) and tet(X4) are adjacent to insertion sequence ISVsa3 on their respective conjugative plasmids and confer a mild fitness cost (relative fitness of >0.704). Database mining and retrospective screening analyses confirm that tet(X3) and tet(X4) are globally present in clinical bacteria-even in the same bacteria as bla(NDM-1), resulting in resistance to both tigecycline and carbapenems. Our findings suggest that both the surveillance of tet(X) variants in clinical and animal sectors and the use of tetracyclines in food production require urgent global attention.201931133751
4845110.9998The changing epidemiology of resistance. Antibiotic resistance is now a linked global problem. Dispersion of successful clones of multidrug resistant (MDR) bacteria is common, often via the movement of people. Local evolution of MDR bacteria is also important under the pressure of excessive antibiotic use, with horizontal gene transfer providing the means by which genes such as bla(CTX-M) spread amongst different bacterial species and strains. Beta-lactamase production is a common resistance mechanism in Gram-negative bacteria, and the rapid dissemination of novel genes reflects their evolution under the selective pressure of antibiotic usage. Many Enterobacteriaceae now carry broad-spectrum beta-lactamases such as CTX-M, with particular genotypes associated with different geographical regions. The spread of these enzymes has compromised the clinical utility of a number of beta-lactam classes and with the spread of genes such as bla(KPC), carbapenems may be increasingly compromised in the future. High-level fluoroquinolone resistance (mainly caused by gyrA mutations) has also been shown to be associated with CTX-M and CMY-type enzymes, commonly due to co-carriage on conjugative plasmids of the gene for the aminoglycoside-inactivating enzyme AAC-6(1)-Ib-cr and qnr genes (which confer low-level resistance), allowing the easy selection of gyrA mutants in the host strain. Resistance in Gram-positive bacteria is also widely distributed and increasing, with the emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) blurring the distinction between hospital and community strains. Antibiotic use and environmental factors all have a role in the emergence and spread of resistance. This article reviews some of the new mechanisms and recent trends in the global spread of MDR bacteria.200919675017
5058120.9998Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn(2+) and K(+)-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.IMPORTANCE There is a critical need to identify alternate approaches to treat infections caused by extensively drug-resistant (XDR) Gram-negative bacteria. Fosfomycin is an old antibiotic which is routinely used for the treatment of urinary tract infections, although there is substantial interest in expanding its use to systemic infections caused by XDR Gram-negative bacteria. In this study, we show that fosA genes, which encode dimeric Mn(2+)- and K(+)-dependent glutathione S-transferase, are widely distributed in the genomes of Gram-negative bacteria-particularly those belonging to the family Enterobacteriaceae-and confer fosfomycin resistance. This finding suggests that chromosomally located fosA genes represent a vast reservoir of fosfomycin resistance determinants that may be transferred to E. coli Furthermore, they suggest that inhibition of FosA activity may provide a viable strategy to potentiate the activity of fosfomycin against XDR Gram-negative bacteria.201728851843
5024130.9998Colistin Resistance in Enterobacterales Strains - A Current View. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 - mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.201931880886
4609140.9998The importance of integrons for development and propagation of resistance in Shigella: the case of Latin America. In Latin America, the disease burden of shigellosis is found to coexist with the rapid and rampant spread of resistance to commonly used antibiotics. The molecular basis of antibiotic resistance lies within genetic elements such as plasmids, transposons, integrons, genomic islands, etc., which are found in the bacterial genome. Integrons are known to acquire, exchange, and express genes within gene cassettes and it is hypothesized that they play a significant role in the transmission of multidrug resistance genes in several Gram-negative bacteria including Shigella. A few studies have described antibiotic resistance genes and integrons among multidrug resistant Shigella isolates found in Latin America. For example, in Brazil, Bolivia, Chile, Costa Rica and Peru, class 1 and class 2 integrons have been detected among multidrug resistant strains of Shigella; this phenomenon is more frequently observed in S. flexneri isolates that are resistant to trimethoprim, sulfamethoxazole, streptomycin, ampicillin, chloramphenicol, and tetracycline. The gene cassette sul2, which is frequently detected in Shigella strains resistant to the sulfonamides, suggests that the sulfonamide-resistant phenotype can be explained by the presence of the sul2 genes independent of the integron class detected. It is to be noted that sul3 was negative in all isolates analyzed in these studies. The high frequency of sulfonamide (as encoded by sul2) and trimethoprim resistance is likely to be a result of the recurrent use of trimethoprim sulfamethoxazole as a popular regimen for the treatment of shigellosis. The observed resistance profiles of Shigella strains confirm that ampicillin and trimethoprim-sulfamethoxazole are ineffective as therapeutic options. In-depth information regarding antibiotic resistance mechanism in this pathogen is needed in order to develop suitable intervention strategies. There is a pressing need for regional and local antimicrobial resistance profiling of Shigella to be included as a part of the public health strategy.201627528086
4953150.9998MCR-5-Producing Colistin-Resistant Cupriavidus gilardii Strain from Well Water in Batna, Algeria. This paper presents the first description of the mcr-5.1 gene in a colistin-resistant Cupriavidus gilardii isolate from well water that supplies a maternity hospital in Algeria. The whole-genome sequence of this strain showed the presence of putative β-lactamase, aac(3)-IVa, and multidrug efflux pump-encoding genes, which could explain the observed multidrug resistance phenotype. Our findings are of great interest, as we highlight a potential contamination route for the spread of mcr genes. IMPORTANCE Colistin resistance mediated by mcr genes in Gram-negative bacteria has gained significant attention worldwide. This is due to the ability of these genes to be horizontally transferred between different bacterial genera and species. Aquatic environments have been suggested to play an important role in the emergence and spread of this resistance mechanism. Here, we describe the first report of an mcr-5-positive Cupriavidus gilardii aquatic isolate through its isolation from well water in Algeria. The significance of our study is in shedding the light on an important environmental reservoir of mcr genes.202134468167
4871160.9998Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.202336640846
4607170.9998Genetics of resistance to trimethoprim in cotrimoxazole resistant uropathogenic Escherichia coli: integrons, transposons, and single gene cassettes. Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.202438946902
4930180.9998Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone.201829617860
5696190.9998Co-introduction of plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), increases fitness and virulence of bacterial host. BACKGROUND: Bacterial isolates with multiple plasmids harbouring different carbapenemase genes have emerged and been identified repeatedly, despite a general notion that plasmids confer fitness cost in bacterial host. In this study, we investigated the effects of plasmids with carbapenemase genes on the fitness and virulence of bacteria. METHODS: Different plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), were isolated from a carbapenem-resistant K. pneumoniae strain. Each plasmid was conjugated into the Escherichia coli strain DH5α, and a transconjugant with both plasmids was also obtained by transformation. Their in vitro competitive ability, biofilm formation, serum resistance, survival ability within macrophage and fruit fly, and fly killing ability were evaluated. RESULTS: The transconjugants with a single plasmid showed identical phenotypes to the plasmid-free strain, except that they decreased fly survival after infection. However, significantly increased fitness, virulence and biofilm production were observed consistently for the transconjugant with both plasmids, harbouring bla(NDM-1) and bla(OXA-232). CONCLUSIONS: Our data indicate that bacteria carrying multiple plasmids encoding different carbapenemases may have increased fitness and virulence, emphasizing the need for diverse strategies to combat antimicrobial resistance.202031900177