# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4918 | 0 | 1.0000 | Time trends for bacterial species and resistance patterns in semen in patients undergoing evaluation for male infertility. Semen from asymptomatic men who are being evaluated as male partners in interfile couples have been reported to contain a variety of bacteria. Longitudinal studies of the variation of these bacteria over time and their resistance patterns have not been commonly reported. At our institution, residues from semen samples are routinely evaluated for bacteria, including antibiotic sensitivity profiles. We set out to profile the changes in semen bacteria and antibiotic resistance at our institution over time. A total of 72 semen isolates were examined for type of bacteria and sensitivity to a panel of antibiotics. The results were divided into two separate 5-year intervals (the first beginning in 2006, the second in 2011) and compared. The majority of bacteria were skin flora, with Streptococcus and Staphylococcus being the most prevalent. The resistance data for these two pathogens showed minimal statistically significant difference between the two time periods, although the Staphylococcus species did show a trend toward increasing resistance, suggesting that antibiotics currently used in sperm cell preparations may need to be varied. | 2018 | 29706808 |
| 5640 | 1 | 0.9998 | Antibiotic consumption and faecal bacterial susceptibility in surgical in-patients. A one-day prevalence study of resistance of faecal bacteria to 19 antibacterial agents was performed in 144 surgical inpatients. Most of the drug-resistant isolates were of aerobic and anaerobic species commonly seen in infections, which indicates that surveys of faecal flora can yield rapid information on local patterns of drug resistance in pathogens relevant to abdominal infection. In faecal bacteria the drug resistance pattern only weakly reflected the local antibiotic consumption. The amount of administered aminoglycosides was relatively small, and no gentamicin-resistant aerobes were found. Absence of resistance was found also for some of the newer agents not yet in clinical use (aztreonam, latamoxef, norfloxacin), but not for others (ceftazidime, ceftriaxone). Despite heavy use of fosfomycin and metronidazole, resistance had not emerged among aerobic and anaerobic bacteria, respectively. Imipenem was unique in inhibiting growth of all aerobic and anaerobic faecal bacteria, in the studied patients with the single exception of a strain of Enterobacter. | 1987 | 3673450 |
| 4917 | 2 | 0.9998 | Rapid Changes in Nasopharyngeal Antibiotic Resistance Gene Profiles After Short Courses of Antibiotics in a Pilot Study of Ambulatory Young Children. We quantified antibiotic resistance genes before and after short antibiotic courses in nasopharyngeal specimens from ambulatory children. Carriage of certain bacteria and resistance genes was common before antibiotics. After antibiotics, we observed substantial reductions in pneumococcal and Staphylococcus aureus carriage and rapid expansion in the abundance of certain resistance genes. | 2021 | 35350815 |
| 4722 | 3 | 0.9998 | Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract. | 2019 | 30938219 |
| 5674 | 4 | 0.9998 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 4723 | 5 | 0.9998 | Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. | 2025 | 39536720 |
| 4721 | 6 | 0.9997 | Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. BACKGROUND: Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. RESULTS: In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. CONCLUSION: The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. | 2009 | 19814790 |
| 4630 | 7 | 0.9997 | Genome Analysis of the Enterococcus faecium Entfac.YE Prophage. BACKGROUND: Bacteriophages are viruses that infect bacteria. Bacteriophages are widely distributed in various environments. The prevalence of bacteriophages in water sources, especially wastewaters, is naturally high. These viruses affect evolution of most bacterial species. Bacteriophages are able to integrate their genomes into the chromosomes of their hosts as prophages and hence transfer resistance genes to the bacterial genomes. Enterococci are commensal bacteria that show high resistance to common antibiotics. For example, prevalence of vancomycin-resistant enterococci has increased within the last decades. METHODS: Enterococcal isolates were isolated from clinical samples and morphological, phenotypical, biochemical, and molecular methods were used to identify and confirm their identity. Bacteriophages extracted from water sources were then applied to isolated Enterococcus faecium (E. faecium). In the next step, the bacterial genome was completely sequenced and the existing prophage genome in the bacterial genome was analyzed. RESULTS: In this study, E. faecium EntfacYE was isolated from a clinical sample. The EntfacYE genome was analyzed and 88 prophage genes were identified. The prophage content included four housekeeping genes, 29 genes in the group of genes related to replication and regulation, 25 genes in the group of genes related to structure and packaging, and four genes belonging to the group of genes associated with lysis. Moreover, 26 genes were identified with unknown functions. CONCLUSION: In conclusion, genome analysis of prophages can lead to a better understanding of their roles in the rapid evolution of bacteria. | 2022 | 35509366 |
| 4817 | 8 | 0.9997 | Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates. | 2019 | 30142035 |
| 4916 | 9 | 0.9997 | A clinical metagenomic study of biopsies from Mexican endophthalmitis patients reveals the presence of complex bacterial communities and a diversity of resistance genes. Infectious endophthalmitis is a severe ophthalmic emergency. This infection can be caused by bacteria and fungi. For efficient treatment, the administration of antimicrobial drugs to which the microbes are susceptible is essential. The aim of this study was to identify micro-organisms in biopsies of Mexican endophthalmitis patients using metagenomic next-generation sequencing and determine which antibiotic resistance genes were present in the biopsy samples. In this prospective case study, 19 endophthalmitis patients were recruited. Samples of vitreous or aqueous humour were extracted for DNA extraction for metagenomic next-generation sequencing. Analysis of the sequencing results revealed the presence of a wide variety of bacteria in the biopsies. Resistome analysis showed that homologues of antibiotic resistance genes were present in several biopsy samples. Genes possibly conferring resistance to ceftazidime and vancomycin were detected in addition to various genes encoding efflux pumps. Our findings contrast with the widespread opinion that only one or a few bacterial strains are present in the infected tissues of endophthalmitis patients. These diverse communities might host many of the resistance genes that were detected, which can further complicate the infections. | 2024 | 39045243 |
| 4649 | 10 | 0.9997 | Factors affecting the measurement of antibiotic resistance in bacteria isolated from lake water. It is more difficult to obtain a reliable assessment of antibiotic resistance in populations of aquatic bacteria than in those populations which are well characterized (e.g. bacteria of medical and veterinary significance). Factors which influence the results include the bacterial taxa involved, their site of origin and the methods and media used to isolate and subculture the bacteria, and to perform the sensitivity tests. Examples of these effects are provided. The resistance profiles obtained with populations of aquatic pseudomonads depend on the species composition of the population. Resistance patterns in aquatic bacteria varied with the site from which they were isolated; a higher incidence of resistance was recorded along shorelines and in sheltered bays than in the open water. The inclusion of antibiotics in the media employed for primary isolation increased the number of individual and multiple resistances recorded. A similar effect was observed with increased inoculum size in the sensitivity disc method but this could be reversed by raising the incubation temperature. The medium used to conduct the test also affected the results and many aquatic bacteria failed to grow on media such as Iso-Sensitest Agar. It is recommended that the sensitivity disc method is adopted for aquatic bacteria because it permits interpretation of a wider range of response. Comparison of the incidence of antibiotic resistance in different habitats will remain meaningless, however, until comprehensive methods for the identification of bacteria are developed and the techniques used for sensitivity testing are standardized. | 1986 | 3636321 |
| 4621 | 11 | 0.9997 | High Prophage Count in Staphylococcus Periprosthetic Joint Infection Is Associated With an Increase in Antibiotic Resistance Genes. BACKGROUND: Periprosthetic joint infections (PJI) caused by Staphylococcus species present a significant clinical challenge, especially in the context of rising antibiotic resistance. Lysogenic phages (viruses that infect bacteria and can integrate into the bacteria's genome in the form of a prophage) have the potential to contribute to antibiotic resistance and treatment failure through the transport of genetic material between bacteria. We hypothesized that prophage presence may be associated with the presence of antimicrobial resistance genes and phenotypic resistance in Staphylococcus species associated with PJI. METHODS: We examined the relationship between the presence of prophage and antibiotic resistance in Staphylococcus isolates collected from synovial fluid samples from 15 PJI patients. Bacterial isolates were assessed for antibiotic resistance and sequenced to identify prophages and antibiotic resistance genes. RESULTS: We observed that a higher prophage count was associated with a higher number of antibiotic resistance genes, but not with phenotypic antibiotic resistance. In addition, none of the prophages identified were significantly associated with phenotypic resistance. CONCLUSIONS: These findings suggest that prophages may contribute to the spread of antibiotic resistance genes, but the impact on phenotypic resistance may be more complex, highlighting the need for further research to explore prophage profiling in PJI biofilms. | 2025 | 40436077 |
| 4640 | 12 | 0.9997 | Genome analysis of probiotic bacteria for antibiotic resistance genes. To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes. | 2022 | 34989942 |
| 5693 | 13 | 0.9997 | Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure. | 2013 | 23129055 |
| 4592 | 14 | 0.9997 | The Genetic Diversity and Antimicrobial Resistance of Pyogenic Pathogens Isolated from Porcine Lymph Nodes. According to the Food and Agriculture Organization of the United Nations, pork remains the most consumed meat in the world. Consequently, it is very important to ensure that it is of the highest microbiological quality. Many of the pathogens that cause lymph node lesions in pigs are zoonotic agents, and the most commonly isolated bacteria are Mycobacterium spp., Streptococcus spp., Staphylococcus aureus and Rhodococcus equi (synonymous with Prescottella equi). The prevention and treatment of zoonotic infections caused by these bacteria are mainly based on antimicrobials. However, an overuse of antimicrobials contributes to the emergence and high prevalence of antimicrobial-resistant strains, which are becoming a serious challenge in many countries. The aim of this study was to evaluate the genetic diversity and antimicrobial resistance of the Streptococcus spp. (n = 48), S. aureus (n = 5) and R. equi (n = 17) strains isolated from swine lymph nodes with and without lesions. All isolates of S. dysgalactiae, S. aureus and R. equi were subjected to PFGE analysis, which showed the genetic relatedness of the tested bacteria in the studied pig populations. Additionally, selected tetracycline and macrolide resistance genes in the streptococcal strains were also studied. The results obtained in the present study provide valuable data on the prevalence, diversity, and antimicrobial resistance of the studied bacteria. Numerous isolated bacterial Streptococcus spp. strains presented resistance to doxycycline, and almost half of them carried tetracycline resistance genes. In addition, R. equi and S. aureus bacteria presented a high level of resistance to beta-lactam antibiotics and to cefotaxime, respectively. | 2023 | 37370345 |
| 5977 | 15 | 0.9997 | Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available. | 2010 | 20401584 |
| 5817 | 16 | 0.9997 | Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. Staphylococcus saprophyticus is the second most common bacteria associated with urinary tract infections (UTIs) in women. The antimicrobial treatment regimen for uncomplicated UTI is normally nitrofurantoin, trimethoprim-sulfamethoxazole (TMP-SMX), or a fluoroquinolone without routine susceptibility testing of S. saprophyticus recovered from urine specimens. However, TMP-SMX-resistant S. saprophyticus has been detected recently in UTI patients, as well as in our cohort. Herein, we investigated the understudied resistance patterns of this pathogenic species by linking genomic antibiotic resistance gene (ARG) content to susceptibility phenotypes. We describe ARG associations with known and novel SCCmec configurations as well as phage elements in S. saprophyticus, which may serve as intervention or diagnostic targets to limit resistance transmission. Our analyses yielded a comprehensive database of phenotypic data associated with the ARG sequence in clinical S. saprophyticus isolates, which will be crucial for resistance surveillance and prediction to enable precise diagnosis and effective treatment of S. saprophyticus UTIs. | 2023 | 38051037 |
| 3937 | 17 | 0.9997 | Design of a system for monitoring antimicrobial resistance in pathogenic, zoonotic and indicator bacteria from food animals. DANMAP is a Danish programme for integrated monitoring of and research on antimicrobial resistance in bacteria from food animals, food and humans. The paper describes how bacteria from broilers, pigs, and cattle are collected, as well as the procedures for data handling and presentation of results. The bacteria from animals include certain pathogens, selected so that they are representative for submissions to Danish diagnostic laboratories, as well as zoonotic bacteria (Campylobacter, Salmonella and Yersinia) and indicator bacteria (E. coli, E. faecium and E. faecalis), from samples collected at abattoirs. The latter samples are selected so that they are representative of the respective animal populations. Therefore, the apparent prevalence of antimicrobial resistance in the populations may be calculated. The isolates are identified to species level and the results of susceptibility testing are stored as continuous variables. All isolates are maintained in a strain collection so that they are available for subsequent research projects. The data handling facilities makes it possible to present results as percent resistant isolates or as the apparent prevalence of resistance in the population, or alternatively as graphical distributions of mm inhibition zones or MIC values. Computer routines have been established that make it possible to detect specific phenotypic expressions of resistance that may be of particular interest. | 1999 | 10783720 |
| 4751 | 18 | 0.9997 | Emerging antibiotic-resistant bacteria. Their treatment in total joint arthroplasty. Successful treatment of an infected total joint arthroplasty can be achieved in approximately 90% of cases. This outcome may be jeopardized by the emergence of antibiotic resistance in bacteria common to these infections. Staphylococci are the most frequently isolated bacteria in total joint infections, and the prevalence of antibiotic resistance in these organisms among all nosocomial and community-acquired infections has been increasing. As many as 46.7% of Staphylococcus aureus strains and 85.7% of coagulase-negative staphylococci strains are methicillin-resistant. Enterococci also are commonly isolated from infected total joint arthroplasties. The prevalence of vancomycin-resistant enterococci among all enterococci strains is estimated at 23%. As the prevalence of these resistant bacteria continues to increase among all infections, it is anticipated that they will be encountered more regularly in total joint infections. Knowledge of the mechanisms of resistance of these bacteria and currently available and newly developed antimicrobials is key to preventing the expansion of antimicrobial resistance and ensuring the future successful treatment of total joint infections. | 1999 | 10611866 |
| 4631 | 19 | 0.9997 | Genome Analysis of an Enterococcal Prophage, Entfac.MY. BACKGROUND: Bacteriophages are bacterial parasites. Unlike lytic bacteriophages, lysogenic bacteriophages do not multiply immediately after entering the host cells and may integrate their genomes into the bacterial genomes as prophages. Prophages can include various phenotypic and genotypic effects on the host bacteria. Enterococcus spp. are Gram-positive bacteria that cause infections in humans and animals. In recent decades, these bacteria have become resistant to various antimicrobials, including vancomycin. The aim of this study was to analyze genome of an enterococcal prophage. METHODS: In this study, Enterococcus faecium EntfacYE was isolated from biological samples and its genome was analyzed using next-generation sequencing method. RESULTS: Overall, 254 prophage genes were identified in the bacterial genome. The prophage included 39 housekeeping, 41 replication and regulation, 80 structural and packaging, and 48 lysis genes. Moreover, 46 genes with unknown functions were identified. All genes were annotated in DNA Data Bank of Japan. CONCLUSION: In general, most prophage genes were linked to packaging and structure (31.5%) gene group. However, genes with unknown functions included a high proportion (18.11%), which indicated necessity of further analyses. Genomic analysis of the prophages can be effective in better understanding of their roles in development of bacterial resistance to antibiotics. Moreover, identification and study of prophages can help researchers develop genetic engineering tools and novel infection therapies. | 2022 | 36061127 |