# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 490 | 0 | 1.0000 | Mercuric resistance genes in gram-positive oral bacteria. Mercury-resistant bacteria isolated from the oral cavities of children carried one of two types of merA gene that appear to have evolved from a common ancestor. Streptococcus oralis, Streptococcus mitis and a few other species had merA genes that were very similar to merA of Bacillus cereus strain RC607. Unlike the B. cereus RC607 merA gene, however, the streptococcal merA genes were not carried on Tn5084-like transposons. Instead, comparisons with microbial genomic sequences suggest the merA gene is located on a novel type II transposon. Coagulase-negative staphylococci and Streptococcus parasanguis had identical merA genes that represent a new merA variant. | 2004 | 15251199 |
| 491 | 1 | 0.9995 | Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. We have studied the mechanisms of the horizontal dissemination of a broad-spectrum mercury resistance determinant among Bacillus and related species. This mer determinant was first described in Bacillus cereus RC607 from Boston Harbor, USA, and was then found in various Bacillus and related species in Japan, Russia and England. We have shown that the mer determinant can either be located at the chromosome, or on a plasmid in the Bacillus species, and is carried by class II mercury resistance transposons: Tn5084 from B. cereus RC607 and B. cereus VKM684 (ATCC10702) and Tn5085 from Exiguobacterium sp. TC38-2b. Tn5085 is identical in nucleotide sequence to TnMERI1, the only other known mer transposon from Bacillus species, but it does not contain an intron like TnMERI1. Tn5085 is functionally active in Escherichia coli. Tn5083, which we have isolated from B. megaterium MK64-1, contains an RC607-like mer determinant, that has lost some mercury resistance genes and possesses a merA gene which is a novel sequence variant that has not been previously described. Tn5083 and Tn5084 are recombinants, and are comprised of fragments from several transposons including Tn5085, and a relative of a putative transposon from B. firmus (which contains similar genes to the cadmium resistance operon of Staphylococcus aureus), as well as others. The sequence data showed evidence for recombination both between transposition genes and between mer determinants. | 2001 | 11446519 |
| 4503 | 2 | 0.9994 | Evolution and transfer of aminoglycoside resistance genes under natural conditions. 3'-Aminoglycoside phosphotransferases [APH(3')] were chosen as a model to study the evolution and the transfer of aminoglycoside resistance genes under natural conditions. Comparison of the amino acid sequences of APH(3') enzymes from transposons Tn903 (type I) and Tn5 (type II) detected in Gram-negative bacteria, from the Gram-positive Staphylococcus and Streptococcus (type III), from the butirosin-producing Bacillus circulans (type IV) and from a neomycin-producing Streptomyces fradiae (type V) indicate that they have diverged from a common ancestor. These structural data support the hypothesis that the antibiotic-producing strains were the source of certain resistance determinants. We have shown that kanamycin resistance in Campylobacter coli BM2509 was due to the synthesis of an APH(3')-III, an enzyme not detected previously in a Gram-negative bacterium. The genes encoding APH(3')-III in Streptococcus and Campylobacter are identical. These findings constitute evidence for a recent in-vivo transfer of DNA between Gram-positive and Gram-negative bacteria. | 1986 | 3027020 |
| 3014 | 3 | 0.9994 | Complete sequence of the multi-resistance plasmid pV7037 from a porcine methicillin-resistant Staphylococcus aureus. The aim of this study was to determine the complete sequence of the multi-resistance plasmid pV7037 to gain insight into the structure and organization of this plasmid. Of the four XbaI clones of pV7037, one clone of 17,577 bp has already been sequenced and shown to carry a multi-resistance gene cluster. The remaining three clones of approximately 12.5, 6.5 and 4.5 kb were sequenced, the entire plasmid sequence correctly assembled and investigated for reading frames. In addition, two reading frames one coding for an ABC transporter and the other coding for an rRNA methylase were cloned and expressed in a S. aureus host to see whether they confer antimicrobial resistance properties. Plasmid pV7037 proved to be 40,971 bp in size. Besides the previously determined resistance gene cluster, it carried a functionally active tet(L) gene for tetracycline resistance, a complete cadDX operon for cadmium resistance and also a variant of the β-lactamase transposon Tn552. Two single bp deletions, which resulted in frame shifts, functionally deleted the genes for the BlaZ β-lactamase and the signal transducer protein BlaR1 in this Tn552 variant of pV7037. Plasmid pV7037 seems to be composed of various parts previously known from plasmids and transposons of staphylococci and other Gram-positive bacteria. However, there are also parts of the plasmid which do not show any homology to so far known sequences deposited in the databases. The novel ABC transporter and rRNA methylase genes identified on pV7037 do not seem to play a role in antimicrobial resistance. The co-location of numerous antimicrobial resistance genes bears the risk of co-transfer and co-selection of resistance genes, but also persistence of resistance genes even if no direct selective pressure by the use of the respective antimicrobial agents is applied. | 2013 | 23953027 |
| 5850 | 4 | 0.9994 | Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria. | 2004 | 15358427 |
| 3571 | 5 | 0.9993 | Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. We have previously reported high-frequency transfer of tetracycline resistance between strains of the rumen anaerobic bacterium Butyrivibrio fibrisolvens. Donor strains were postulated to carry two TcR genes, one of which is transferred on a novel chromosomal element. It is shown here that coding sequences within the non-transmissible gene in B. fibrisolvens 1.230 are identical to those of the Streptococcus pneumoniae tet(O) gene. This provides the first evidence for genetic exchange between facultatively anaerobic bacteria and rumen obligate anaerobes. In contrast, the product of the transmissible TcR gene shares only 68% amino acid sequence identity with the TetO and TetM proteins and represents a new class of ribosome protection tetracycline resistance determinant, designated Tet W. The tet(W) coding region shows a higher DNA G + C content (53%) than other B. fibrisolvens genes or other ribosome protection-type tet genes, suggesting recent acquisition from a high G + C content genome. Tet(W) genes with almost identical sequences are also shown to be present in TcR strains of B. fibrisolvens from Australian sheep and in TcR strains of two other genera of rumen obligate anaerobes, Selenomonas ruminantium and Mitsuokella multiacidus. This provides compelling evidence for recent intergeneric transfer of resistance genes between ruminal bacteria. Tet(W) is not restricted to ruminal bacteria, as it was also present in a porcine strain of M. multiacidus. | 1999 | 11207718 |
| 403 | 6 | 0.9993 | Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons. | 1987 | 3037534 |
| 364 | 7 | 0.9993 | Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. A cluster of genes involved in antibiotic and heavy metal resistance has been characterized from a clinical isolate of the gram-negative bacterium Stenotrophomonas maltophilia. These genes include a macrolide phosphotransferase (mphBM) and a cadmium efflux determinant (cadA), together with the gene cadC coding for its transcriptional regulator. The cadC cadA region is flanked by a truncated IS257 sequence and a region coding for a bin3 invertase. Despite their presence in a gram-negative bacterium, these genetic elements share a common gram-positive origin. The possible origin of these determinants as a remnant composite transposon as well as the role of gene transfer between gram-positive and gram-negative bacteria for the acquisition of antibiotic resistance determinants in chronic, mixed infections is discussed. | 2000 | 10858330 |
| 5864 | 8 | 0.9993 | Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum. | 2002 | 12383727 |
| 493 | 9 | 0.9993 | Mercury resistance transposons of gram-negative environmental bacteria and their classification. A total of 29 mercury resistance transposons were isolated from mercury-resistant environmental strains of proteobacteria collected in different parts of Eurasia and the USA and tested for hybridization with probes specific for transposase genes of known mercury resistance transposons. 9 were related to Tn21 in this test, 12 were related to Tn5053, 4 to Tn5041 and 1 to Tn5044; three transposons were negative in this test. Restriction mapping and DNA sequencing revealed that 12 transposons were identical or nearly identical to their corresponding relatives while the rest showed varying divergence from their closest relatives. Most of these previously unknown transposons apparently arose as a result of homologous or site-specific recombination. One of these, Tn5046, was completely sequenced, and shown to be a chimera with the mer operon and the transposition module derived from the transposons related to Tn5041 and to Tn5044, respectively. Transposon Tn5070, showing no hybridization with the specific probes used in this study, was also completely sequenced. The transposition module of Tn5070 was most closely related to that of Tn3 while the mer operon was most closely related to that of plasmid pMERPH. The merR of Tn5070 is transcribed in the same direction as the mer structural genes, which is typical for mer operons of gram-positive bacteria. Our data suggest that environmental bacteria may harbor many not yet recognized mercury resistance transposons and warrant their further inventory. | 2001 | 11763242 |
| 5851 | 10 | 0.9993 | Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates. | 1998 | 10932734 |
| 441 | 11 | 0.9993 | Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities. | 1985 | 3994373 |
| 365 | 12 | 0.9992 | The diversity of mercury reductases among mercury-resistant bacteria. Two immunologically non-cross-reactive types of mercury reductases were found among Gram-negative and two among Gram-positive mercury-resistant environmental bacteria. Mercury reductases were further discriminated by 'spur' formation immunodiffusion tests. Immunologically indistinguishable mercury reductases were found among strains belonging to phylogenetically distant genera. This suggests a horizontal transfer of mercury resistance genes between these strains. | 1988 | 3134258 |
| 3043 | 13 | 0.9992 | The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family. | 1984 | 6328217 |
| 3572 | 14 | 0.9992 | Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. tet(W) is one of the most abundant tetracycline resistance genes found in bacteria from the mammalian gut and was first identified in the rumen anaerobe Butyrivibrio fibrisolvens 1.230, where it is highly mobile and its transfer is associated with the transposable chromosomal element TnB1230. In order to compare the genetic basis for tet(W) carriage in different bacteria, we studied sequences flanking tet(W) in representatives of seven bacterial genera originating in diverse gut environments. The sequences 657 bp upstream and 43 bp downstream of tet(W) were 96 to 100% similar in all strains examined. A common open reading frame (ORF) was identified downstream of tet(W) in five different bacteria, while another conserved ORF that flanked tet(W) in B. fibrisolvens 1.230 was also present upstream of tet(W) in a human colonic Roseburia isolate and in another rumen B. fibrisolvens isolate. In one species, Bifidobacterium longum (strain F8), a novel transposase was located within the conserved 657-bp region upstream of tet(W) and was flanked by imperfect direct repeats. Additional direct repeats 6 bp long were identified on each end of a chromosomal ORF interrupted by the insertion of the putative transposase and the tet(W) gene. This tet(W) gene was transferable at low frequencies between Bifidobacterium strains. A putative minielement carrying a copy of tet(W) was identified in B. fibrisolvens transconjugants that had acquired the tet(W) gene on TnB1230. Several different mechanisms, including mechanisms involving plasmids and conjugative transposons, appear to be involved in the horizontal transfer of tet(W) genes, but small core regions that may function as minielements are conserved. | 2006 | 16870752 |
| 443 | 15 | 0.9992 | Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid. | 1991 | 1954576 |
| 442 | 16 | 0.9992 | Mercuric reductase in environmental gram-positive bacteria sensitive to mercury. According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria. | 1992 | 1427009 |
| 486 | 17 | 0.9992 | Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Resistance to a range of heavy metal ions was determined for lead-resistant and other bacteria which had been isolated from a battery-manufacturing site contaminated with high concentration of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) and Gram-negative (Alcaligenes species) isolates were resistant to lead, mercury, cadmium, cobalt, zinc and copper, although the levels of resistance to the different metal ions were specific for each isolate. Polymerase chain reaction, DNA-DNA hybridization and DNA sequencing were used to explore the nature of genetic systems responsible for the metal resistance in eight of the isolates. Specific DNA sequences could be amplified from the genomic DNA of all the isolates using primers for sections of the mer (mercury resistance determinant on the transposon Tn501) and pco (copper resistance determinant on the plasmid pRJ1004) genetic systems. Positive hybridizations with mer and pco probes indicated that the amplified segments were highly homologous to these genes. Some of the PCR products were cloned and partially sequenced, and the regions sequenced were highly homologous to the appropriate regions of the mer and pco determinants. These results demonstrate the wide distribution of mercury and copper resistance genes in both Gram-positive and Gram-negative isolates obtained from this lead-contaminated soil. In contrast, the czc (cobalt, zinc and cadmium resistance) and chr (chromate resistance) genes could not be amplified from DNAs of some isolates, indicating the limited contribution, if any, of these genetic systems to the metal ion resistance of these isolates. | 1997 | 9342884 |
| 5964 | 18 | 0.9992 | Heat shock treatment increases the frequency of loss of an erythromycin resistance-encoding transposable element from the chromosome of Lactobacillus crispatus CHCC3692. A 3,165-bp chromosomally integrated transposon, designatedTn3692, of the gram-positive strain Lactobacillus crispatus CHCC3692 contains an erm(B) gene conferring resistance to erythromycin at concentrations of up to 250 micrograms/ml. Loss of this resistance can occur spontaneously, but the rate is substantially increased by heat shock treatment. Heat shock treatment at 60 degrees C resulted in an almost 40-fold increase in the frequency of erythromycin-sensitive cells (erythromycin MIC, 0.047 micrograms/ml). The phenotypic change was followed by a dramatic increase in transcription of the transposase gene and the concomitant loss of an approximately 2-kb DNA fragment carrying the erm(B) gene from the 3,165-bp erm transposon. In cells that were not subjected to heat shock, transcription of the transposase gene was not detectable. The upstream sequence of the transposase gene did not show any homology to known heat shock promoters in the gene data bank. Significant homology (>99%) was observed between the erythromycin resistance-encoding gene from L. crispatus CHCC3692 and the erm(B) genes from other gram-positive bacteria, such as Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium, and Lactobacillus reuteri, which strongly indicates a common origin of the erm(B) gene for these species. The transposed DNA element was not translocated to other parts of the genome of CHCC3692, as determining by Southern blotting, PCR analysis, and DNA sequencing. No other major aberrations were observed, as judged by colony morphology, growth performance of the strain, and pulsed-field gel electrophoresis. These observations suggest that heat shock treatment could be used as a tool for the removal of unwanted antibiotic resistance genes harbored in transposons flanked by insertion sequence elements or transposases in lactic acid bacteria used for animal and human food production. | 2003 | 14660363 |
| 456 | 19 | 0.9992 | Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE. | 1998 | 9687401 |