Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
490801.0000Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.202438191970
490710.9999Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. Antimicrobial use in food animals may contribute to antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of animal intestine may serve as a reservoir of resistance-genes. To understand the dynamics of plasmid-mediated resistance to cephalosporin ceftiofur in enteric commensals of cattle, we developed a deterministic mathematical model of the dynamics of ceftiofur-sensitive and resistant commensal enteric Escherichia coli (E. coli) in the absence of and during parenteral therapy with ceftiofur. The most common treatment scenarios including those using a sustained-release drug formulation were simulated; the model outputs were in agreement with the available experimental data. The model indicated that a low but stable fraction of resistant enteric E. coli could persist in the absence of immediate ceftiofur pressure, being sustained by horizontal and vertical transfers of plasmids carrying resistance-genes, and ingestion of resistant E. coli. During parenteral therapy with ceftiofur, resistant enteric E. coli expanded in absolute number and relative frequency. This expansion was most influenced by parameters of antimicrobial action of ceftiofur against E. coli. After treatment (>5 weeks from start of therapy) the fraction of ceftiofur-resistant cells among enteric E. coli, similar to that in the absence of treatment, was most influenced by the parameters of ecology of enteric E. coli, such as the frequency of transfer of plasmids carrying resistance-genes, the rate of replacement of enteric E. coli by ingested E. coli, and the frequency of ceftiofur resistance in the latter.201222615803
490620.9999Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains. The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL) plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC) resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates and shows how these can contribute to transmission of resistance genes through the food chain.201525830294
472130.9999Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. BACKGROUND: Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. RESULTS: In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. CONCLUSION: The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine.200919814790
490940.9998In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. INTRODUCTION: The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. METHODS: In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. RESULTS AND DISCUSSION: All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla (CMY2)-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.202336846779
336950.9998On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli. Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1(+) conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1(+) plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1(+) clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.201931247256
314360.9998Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure. The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure.201626616601
339170.9998Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.201020629799
340880.9998The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to beta-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system.200415318485
340090.9998Chicken liver is a potential reservoir of bacteriophages and phage-derived particles containing antibiotic resistance genes. Poultry meat production is one of the most important agri-food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food-borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non-sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 10(3) to 10(6) phage particles per g, which carried a range of ARGs (bla(TEM) , bla(CTx-M-1) , sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG-carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.202235485188
4910100.9998Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A β-lactamase-encoding gene (bla(CTX-M-15)) appear to be displacing strains that harbor a class C β-lactamase gene (bla(CMY-2)) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 μg/mL) and ceftiofur (≥16 μg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 μg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 μg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 μg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with bla(CTX-M-15) is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.202235867586
3365110.9998Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BACKGROUND: Conjugation plays a major role in the transmission of plasmids encoding antibiotic resistance genes in both clinical and general settings. The conjugation efficiency is influenced by many biotic and abiotic factors, one of which is the taxonomic relatedness between donor and recipient bacteria. A comprehensive overview of the influence of donor-recipient relatedness on conjugation is still lacking, but such an overview is important to quantitatively assess the risk of plasmid transfer and the effect of interventions which limit the spread of antibiotic resistance, and to obtain parameter values for conjugation in mathematical models. Therefore, we performed a meta-analysis on reported conjugation frequencies from Escherichia coli donors to various recipient species. RESULTS: Thirty-two studies reporting 313 conjugation frequencies for liquid broth matings and 270 conjugation frequencies for filter matings were included in our meta-analysis. The reported conjugation frequencies varied over 11 orders of magnitude. Decreasing taxonomic relatedness between donor and recipient bacteria, when adjusted for confounding factors, was associated with a lower conjugation frequency in liquid matings. The mean conjugation frequency for bacteria of the same order, the same class, and other classes was 10, 20, and 789 times lower than the mean conjugation frequency within the same species, respectively. This association between relatedness and conjugation frequency was not found for filter matings. The conjugation frequency was furthermore found to be influenced by temperature in both types of mating experiments, and in addition by plasmid incompatibility group in liquid matings, and by recipient origin and mating time in filter matings. CONCLUSIONS: In our meta-analysis, taxonomic relatedness is limiting conjugation in liquid matings, but not in filter matings, suggesting that taxonomic relatedness is not a limiting factor for conjugation in environments where bacteria are fixed in space.202032456625
3935120.9998Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. The use of antimicrobials in the food animal industry has caused an increased prevalence of antimicrobial-resistant bacteria and antimicrobial resistance genes, which can be transferred to the microbiota of humans through the food chain or the environment. To reduce the development and spread of antimicrobial resistance, restrictions on antimicrobial use in food animals have been implemented in different countries. We investigated the impact of an antimicrobial restriction intervention during two generations of pigs. Fecal samples were collected in five growth phases. The frequency of antimicrobial-resistant coliforms and antimicrobial-resistant bacteria or antimicrobial resistance genes was analyzed. No differences in the richness or abundance of antimicrobial-resistant coliforms or antimicrobial resistance genes were found when animals fed with or without prophylactic antimicrobials were compared. Withholding antimicrobial supplementation did not negatively affect weight gain in pigs. Withdrawal of prophylactic antimicrobial consumption during two generations of pigs was not enough to reduce the prevalence of antimicrobial resistance genes, as measured by richness and abundance markers. This study indicates that the fitness costs associated with bacterial carriage of some antimicrobial resistance genes are low.202134872396
4723130.9998Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management.202539536720
4572140.9998Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.202336462825
3531150.9998Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria.201931536878
4903160.9998Tetracycline resistance gene transfer from Escherichia coli donors to Salmonella Heidelberg in chickens is impacted by the genetic context of donors. Chicken ceca are a rich source of bacteria, including zoonotic pathogens such as Salmonella enterica. The microbiota includes strains/species carrying antimicrobial resistance genes and horizontal transfer of resistance determinants between species may increase the risk to public health and farming systems. Possible sources of these antimicrobial resistance donors - the eggshell carrying bacteria from the hen vertically transmitted to the offspring, or the barn environment where chicks are hatched and raised - has been little explored. In this study, we used Salmonella enterica serovar Heidelberg to evaluate if layer chicks raised in different environments (using combinations of sterilized or non-sterile eggs placed in sterilized isolation chambers or non-sterile rooms) acquired transferable tetracycline resistance genes from surrounding bacteria, especially Escherichia coli. Two-day old chicks were challenged with an antibiotic-susceptible S. Heidelberg strain SH2813(nal)(R) and Salmonella recovered from the cecum of birds at different timepoints to test the in vivo acquisition of tetracycline resistance. Tetracycline-resistant E. coli isolates recovered from birds from the in vivo experiment were used to test the in vitro transfer of tetracycline resistance genes from E. coli to Salmonella. Even though Salmonella SH2813(nal)(R) colonized the 2-day old chicks after oral challenge, tetracycline-resistant Salmonella transconjugants were not recovered, as previously observed. In vitro experiments provided similar results. We discuss several hypotheses that might explain the absence of transconjugants in vitro and in vivo, despite the presence of diverse plasmids in the recovered E. coli. The factors that can inhibit/promote antimicrobial resistance transfers to Salmonella for different plasmid types need further exploration.202439581077
3938170.9998Human health hazards associated with the administration of antimicrobials to slaughter animals. Part II. An assessment of the risks of resistant bacteria in pigs and pork. Risks for the consumer regarding the acquisition of resistant bacteria and/or resistance genes via the consumption of pork are discussed. In general, Salmonella spp. and Escherichia coli that originate from animals do not easily transfer their resistance genes to the resident intestinal flora of humans. The prevalence of resistant E. coli in humans seems more associated with being a vegetarian (odds ratio (OR) 1.89) than with the consumption of meat and meat products. Other risk factors are treatment with antimicrobials (OR 2-5), becoming hospitalized (OR 5.93), or working in a health setting (OR 4.38). In the Netherlands, annually an estimated 45,000 people (0-150,000) become a carrier of resistant E. coli and/or resistance genes that ori ginate from pigs, while an estimated 345,000 persons (175,000-600,000) become a carrier of resistant E. coli and/or resistance genes that originate from hospitals, e.g. other patients. Any problems with resistant Salmonella spp. that stem from pigs are, in fact, an integral part of the total problem of food-borne salmonellosis. Sometimes there are outbreaks of a specific multi-resistant clone of S. typhimurium that causes problems in both farm animals and humans. The probability that in the next 30 years there is no or maximally one outbreak of a specific clone that originates from pig herds is estimated at about 75%. Antimicrobials used as a growth promoter can have a measurable influence on the prevalence of resistant bacteria. The likely chain of events regarding avoparcin and the selection and dissemination of resistance against vancomycin in the enterococci gives the impression that the impact of the use of antimicrobials in animals on the prevalence of resistance in humans is largely determined by whether resistance genes are, or become, located on a self-transferable transposon. Furthermore, consumer health risks of antimicrobials used in slaughter pigs are mainly determined by the selection and dissemination of bacterial resistance and much less by the toxicological properties of any residues in pork. It is also concluded that most of the problems with resistant bacteria in humans are associated with the medical use of antimicrobials, and that the impact of particularly the veterinary use of antimicrobials is limited. However, the impact of antimicrobials used as a feed additive appears to be much greater than that of antimicrobials used for strictly veterinary purposes. The use of antimicrobials as a feed additive should therefore be seriously reconsidered.200111205995
3402180.9998Antibiotic resistance, virulence factors and biofilm formation ability in Escherichia coli strains isolated from chicken meat and wildlife in the Czech Republic. Attachment of pathogenic bacteria to food contact surfaces and the subsequent biofilm formation represent a serious threat for the food industry, since these bacteria are more resistant to antimicrobials or possess more virulence factors. The main aim of this study was to investigate the correlation between antibiotic resistance against 13 antibiotics, distribution of 10 virulence factors and biofilm formation in 105 Escherichia coli strains according to their origin. The high prevalence of antibiotic resistance that we have found in wildlife isolates could be acquired by horizontal transfer of resistance genes from human or domestic or farm animals. Consequently, these commensal bacteria might serve as indicator of antimicrobial usage for human and veterinary purposes in the Czech Republic. Further, 46 out of 66 resistant isolates (70%) were able to form biofilm and we found out statistically significant correlation between prevalence of antibiotic resistance and biofilm formation ability. The highest prevalence of antibiotic resistance was observed in weak biofilm producers. Biofilm formation was not statistically associated with any virulence determinant. However, we confirmed the correlation between prevalence of virulence factors and host origin. Chicken isolates possessed more virulence factors (66%), than isolates from wildlife (37%). We can conclude that the potential spread of antibiotic resistance pattern via the food chain is of high concern for public health. Even more, alarming is that E. coli isolates remain pathogenic potential with ability to form biofilm and these bacteria may persist during food processing and consequently lead to greater risks of food contamination.201728494209
3465190.9998Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments. Flies play an important role as vectors in the transmission of antimicrobial-resistant bacteria (ARB) and are hypothesized to transfer ARB between internal and external livestock housing areas. The aim of this study was to understand the role that flies may play in the maintenance of ARB in the farm environment. We first evaluated the fate of ingested antimicrobial-resistant Escherichia coli harboring a plasmid containing antimicrobial-resistance genes (ARGs) throughout the housefly (Musca domestica) life cycle, from adult to the subsequent F1 generation. Antimicrobial-resistant E. coli was isolated from different life cycle stages and ARG carriage quantified. The ingested E. coli persisted throughout the fly life cycle, and ARG carriage was maintained at a constant level in the housefly microbiota. To clarify the transmission of ARB from flies to livestock, 30-day-old chickens were inoculated with maggots containing antimicrobial-resistant E. coli. Based on the quantification of bacteria isolated from cecal samples, antimicrobial-resistant E. coli persisted in these chickens for at least 16 days. These results suggest that flies act as a reservoir of ARB throughout their life cycle and may therefore be involved in the maintenance and circulation of ARB in the farm environment.201929708845