Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter baylyi to Escherichia coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
490101.0000Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter baylyi to Escherichia coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. Agricultural use of antibiotics is recognized by the U.S. Centers for Disease Control and Prevention as a major contributor to antibiotic-resistant infections. While most One Health attention has been on the potential for antibiotic resistance transmission from livestock and contaminated meat products to people, plant foods are fundamental to the food chain for meat eaters and vegetarians alike. We hypothesized that environmental bacteria that colonize plant foods may serve as platforms for the persistence of antibiotic-resistant bacteria and for horizontal gene transfer of antibiotic-resistant genes. Donor Acinetobacter baylyi and recipient Escherichia coli were cocultured in vitro, in planta on lettuce, and in vivo in BALB/c mice. We showed that nonpathogenic, environmental A. baylyi is capable of transferring plasmids conferring antibiotic resistance to E. coli clinical isolates on lettuce leaf discs. Furthermore, transformant E. coli from the in planta assay could then colonize the mouse gut microbiome. The target antibiotic resistance plasmid was identified in mouse feces up to 5 days postinfection. We specifically identified in vivo transfer of the plasmid to resident Klebsiella pneumoniae in the mouse gut. Our findings highlight the potential for environmental bacteria exposed to antibiotics to transmit resistance genes to mammalian pathogens during ingestion of leafy greens.IMPORTANCE Previous efforts have correlated antibiotic-fed livestock and meat products with respective antibiotic resistance genes, but virtually no research has been conducted on the transmission of antibiotic resistance from plant foods to the mammalian gut (C. S. Hölzel, J. L. Tetens, and K. Schwaiger, Pathog Dis 15:671-688, 2018, https://doi.org/10.1089/fpd.2018.2501; C. M. Liu et al., mBio 9:e00470-19, 2018, https://doi.org/10.1128/mBio.00470-18; B. Spellberg et al., NAM Perspectives, 2016, https://doi.org/10.31478/201606d; J. O'Neill, Antimicrobials in agriculture and the environment, 2015; Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2019). Here, we sought to determine if horizontal transmission of antibiotic resistance genes can occur between lettuce and the mammalian gut microbiome, using a mouse model. Furthermore, we have created a new model to study horizontal gene transfer on lettuce leaves using an antibiotic-resistant transformant of A. baylyi (Ab(zeoR)).202032461272
571710.9994Introduction of the transmissible mobile colistin resistance genes mcr-3 and mcr-9 to the USA via imported seafood. The emergence and global dissemination of the mobile colistin resistance genes (mcr) threaten the efficacy of colistin, a high-priority, critically important antibiotic that is used to treat complicated infections with multidrug-resistant Gram-negative bacteria in humans. The occurrence of mcr in the USA has been suggested to be relatively limited, particularly in bacteria associated with domestic foods and food animals. This is because colistin has neither been marketed nor approved for use in agriculture in the USA. However, mcr-carrying bacteria can occur on foods imported from countries where these genes might be relatively more prevalent. Yet, studies on mcr in vulnerable imported foods in the USA are lacking. To address this gap in knowledge, we assessed the role of imported seafood as a potential carrier of mcr genes to the USA. Imported seafood samples were aseptically collected from eight major retail stores across Georgia, USA. In-depth analyses revealed the occurrence of mcr-9 in bacteria isolated from imported shrimp samples. The mcr-9-carrying bacteria were identified as Serratia nevei, a newly described species that belongs to the Serratia marcescens complex. The mcr-9 in the S. nevei isolates was carried on IncHI2 plasmids that were transferable and conferred colistin resistance to naïve Escherichia coli. Further analysis identified a chromosomal mcr-3.17 in Aeromonas salmonicida isolated from imported scallops. All the mcr-carrying isolates harbored other important antibiotic resistance genes. Taken together, our data showed that imported seafood, specifically shrimps, might be an overlooked source contributing to the introduction and spread of transmissible colistin resistance genes in the USA. IMPORTANCE: Colistin, an important antibiotic, is used to treat certain bacterial infections in humans that can be severe and/or life-threatening. However, these bacteria can acquire the mobile colistin resistance (mcr) genes and become resistant to this antibiotic. Plasmid-borne mcr can jump between bacterial species, spreading in bacteria across a variety of hosts and niches. Therefore, monitoring the spread of mcr is critical to maintain the efficacy of colistin. In the USA, the occurrence of mcr in domestically produced food is thought to be limited. In this study, we showed that mcr can be carried into the USA by bacteria on imported seafood. A specific gene, mcr-9, was located on a plasmid that could be transferred to other bacteria. Therefore, imported seafood can be an overlooked source of mcr in the USA. It is important to monitor and assess mcr in imported seafood to control the proliferation of colistin resistance in the USA.202540622135
393820.9994Human health hazards associated with the administration of antimicrobials to slaughter animals. Part II. An assessment of the risks of resistant bacteria in pigs and pork. Risks for the consumer regarding the acquisition of resistant bacteria and/or resistance genes via the consumption of pork are discussed. In general, Salmonella spp. and Escherichia coli that originate from animals do not easily transfer their resistance genes to the resident intestinal flora of humans. The prevalence of resistant E. coli in humans seems more associated with being a vegetarian (odds ratio (OR) 1.89) than with the consumption of meat and meat products. Other risk factors are treatment with antimicrobials (OR 2-5), becoming hospitalized (OR 5.93), or working in a health setting (OR 4.38). In the Netherlands, annually an estimated 45,000 people (0-150,000) become a carrier of resistant E. coli and/or resistance genes that ori ginate from pigs, while an estimated 345,000 persons (175,000-600,000) become a carrier of resistant E. coli and/or resistance genes that originate from hospitals, e.g. other patients. Any problems with resistant Salmonella spp. that stem from pigs are, in fact, an integral part of the total problem of food-borne salmonellosis. Sometimes there are outbreaks of a specific multi-resistant clone of S. typhimurium that causes problems in both farm animals and humans. The probability that in the next 30 years there is no or maximally one outbreak of a specific clone that originates from pig herds is estimated at about 75%. Antimicrobials used as a growth promoter can have a measurable influence on the prevalence of resistant bacteria. The likely chain of events regarding avoparcin and the selection and dissemination of resistance against vancomycin in the enterococci gives the impression that the impact of the use of antimicrobials in animals on the prevalence of resistance in humans is largely determined by whether resistance genes are, or become, located on a self-transferable transposon. Furthermore, consumer health risks of antimicrobials used in slaughter pigs are mainly determined by the selection and dissemination of bacterial resistance and much less by the toxicological properties of any residues in pork. It is also concluded that most of the problems with resistant bacteria in humans are associated with the medical use of antimicrobials, and that the impact of particularly the veterinary use of antimicrobials is limited. However, the impact of antimicrobials used as a feed additive appears to be much greater than that of antimicrobials used for strictly veterinary purposes. The use of antimicrobials as a feed additive should therefore be seriously reconsidered.200111205995
490430.9994Mobility of β-Lactam Resistance Under Bacterial Co-infection and Ampicillin Treatment in a Mouse Model. Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to the dissemination of antibiotic-resistance genes in the gut microbiota and the development of antibiotic-resistant bacterial infection, a significant threat to animal and public health. Food or water may be contaminated with multiple resistant bacteria, but animal models on gene transfer were mainly based on single-strain infections. In this study, we investigated the mobility of β-lactam resistance following infection with single- versus multi-strain of resistant bacteria under ampicillin treatment. We characterized three bacterial strains isolated from food-animal production systems, Escherichia coli O80:H26 and Salmonella enterica serovars Bredeney and Heidelberg. Each strain carries at least one conjugative plasmid that encodes a β-lactamase. We orally infected mice with each or all three bacterial strain(s) in the presence or absence of ampicillin treatment. We assessed plasmid transfer from the three donor bacteria to an introduced E. coli CV601gfp recipient in the mouse gut, and evaluated the impacts of the bacterial infection on gut microbiota and gut health. In the absence of ampicillin treatment, none of the donor or recipient bacteria established in the normal gut microbiota and plasmid transfer was not detected. In contrast, the ampicillin treatment disrupted the gut microbiota and enabled S. Bredeney and Heidelberg to colonize and transfer their plasmids to the E. coli CV601gfp recipient. E. coli O80:H26 on its own failed to colonize the mouse gut. However, during co-infection with the two Salmonella strains, E. coli O80:H26 colonized and transferred its plasmid to the E. coli CV601gfp recipient and a residential E. coli O2:H6 strain. The co-infection significantly increased plasmid transfer frequency, enhanced Proteobacteria expansion and resulted in inflammation in the mouse gut. Our findings suggest that single-strain infection models for evaluating in vivo gene transfer may underrepresent the consequences of multi-strain infections following the consumption of heavily contaminated food or water.202032733428
574640.9994Identification of a Novel Plasmid-Borne Gentamicin Resistance Gene in Nontyphoidal Salmonella Isolated from Retail Turkey. The spread of antibiotic-resistant bacteria presents a global health challenge. Efficient surveillance of bacteria harboring antibiotic resistance genes (ARGs) is a critical aspect to controlling the spread. Increased access to microbial genomic data from many diverse populations informs this surveillance but only when functional ARGs are identifiable within the data set. Current, homology-based approaches are effective at identifying the majority of ARGs within given clinical and nonclinical data sets for several pathogens, yet there are still some whose identities remain elusive. By coupling phenotypic profiling with genotypic data, these unknown ARGs can be identified to strengthen homology-based searches. To prove the efficacy and feasibility of this approach, a published data set from the U.S. National Antimicrobial Resistance Monitoring System (NARMS), for which the phenotypic and genotypic data of 640 Salmonella isolates are available, was subjected to this analysis. Six isolates recovered from the NARMS retail meat program between 2011 and 2013 were identified previously as phenotypically resistant to gentamicin but contained no known gentamicin resistance gene. Using the phenotypic and genotypic data, a comparative genomics approach was employed to identify the gene responsible for the observed resistance in all six of the isolates. This gene, grdA, is harbored on a 9,016-bp plasmid that is transferrable to Escherichia coli, confers gentamicin resistance to E. coli, and has never before been reported to confer gentamicin resistance. Bioinformatic analysis of the encoded protein suggests an ATP binding motif. This work demonstrates the advantages associated with coupling genomics technologies with phenotypic data for novel ARG identification.202032816720
491050.9994Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A β-lactamase-encoding gene (bla(CTX-M-15)) appear to be displacing strains that harbor a class C β-lactamase gene (bla(CMY-2)) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 μg/mL) and ceftiofur (≥16 μg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 μg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 μg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 μg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with bla(CTX-M-15) is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.202235867586
502260.9994HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes. Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum β-lactamases (ESBL) and carbapenemases as "critical" priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 μg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids.IMPORTANCE More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections.202032098822
662370.9994Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved.202133803844
574080.9993Rapid Emergence of Florfenicol-Resistant Invasive Non-Typhoidal Salmonella in China: A Potential Threat to Public Health. Infection caused by invasive Salmonella occurs when Salmonella bacteria, which normally cause diarrhea, enter the bloodstream and spread through the body. We report the dramatic increase in florfenicol-resistant invasive non-typhoidal Salmonella (iNTS) in China between 2007 and 2016. Of the 186 iNTS strains isolated during the study period, 34 were florfenicol resistant, most of which harbored known resistance genes. Florfenicol is exclusively used in veterinary medicine in China, but now florfenicol-resistant iNTS is found in clinical patients. This finding indicates that antimicrobial resistance produced in veterinary medicine can be transmitted to humans, which poses a severe threat to public health.201931642424
574590.9993F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic.IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria.202032759337
9912100.9993Comprehensive Genomic Investigation of Coevolution of mcr genes in Escherichia coli Strains via Nanopore Sequencing. Horizontal gene transfer facilitates the spread of antibiotic resistance genes, which constitutes a global challenge. However, the evolutionary trajectory of the mobile colistin resistome in bacteria is largely unknown. To investigate the coevolution and fitness cost of the colistin resistance genes in wild strains, different assays to uncover the genomic dynamics of mcr-1 and mcr-3 in bacterial populations are utilized. Escherichia coli strains harboring both mcr-1 and mcr-3.1/3.5 are isolated and mcr genes are associated with diverse mobile elements. Under exposure to colistin, the mcr-1-bearing resistome is stably inherited during bacterial replication, but mcr-3 is prone to be eliminated in populations of certain strains. In the absence of colistin, the persistence rates of the mcr-1 and mcr-3-bearing subclones varies depending on the genomic background. The decay of the mcr-bearing bacterial populations can be mediated by the elimination of mcr-containing segments, large genomic deletions, and plasmid loss. Mobile elements, including plasmids and transposons, are double-edged swords in the evolution of the resistome. The findings support the idea that antibiotic overuse accounts for global spread of multidrug-resistant (MDR) bacteria. Therefore, stringent regulation of antibiotic prescription for humans and animals should be performed systematically to alleviate the threat of MDR bacteria.202133728052
5026110.9993Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: a scoping review. Colistin (also known as polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest number of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region.202236000241
4951120.9993Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes.202439599474
5006130.9993Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.202236726572
1918140.9993Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. The dissemination of antimicrobial resistance genes and the bacterium that harbor them have increasingly become a public concern, especially in low- and middle-income countries. The present study used whole-genome sequencing to analyze 10 KPC-2-producing Klebsiella pneumoniae isolates obtained from clinical specimens originated from Brazilian hospitals. The study documents a relevant "snapshot" of the presence of class 1 integrons in 90% of the strains presenting different gene cassettes (dfrA30, dfrA15, dfrA12, dfrA14, aadA1, aadA2, and aac(6')Iq), associated or not with transposons. Two strains presented nonclassical integron (lacking the normal 3'conserved segment). In general, most strains showed a complex resistome, characterizing them as highly resistant. Integrons, a genetically stable and efficient system, confer to bacteria as highly adaptive and low cost evolution potential to bacteria, even more serious when associated with high-risk clones, indicating an urgent need for control and prevention strategies to avoid the spread of resistance determinants in Brazil. Despite this, although the class 1 integron identified in the KPC-2-producing K. pneumoniae clones is important, our findings suggest that other elements probably have a greater impact on the spread of antimicrobial resistance, since many of these important genes were not related to this cassette.201931074706
1583150.9993Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue detected during routine in silico screening of sequenced Salmonella genomes for antimicrobial resistance genes. The amino acid sequence of mcr-9, detected in a multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium (S Typhimurium) strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using Translated Nucleotide BLAST (tblastn). The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2-mg/liter European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG (isopropyl-β-d-thiogalactopyranoside)-induced promoter to determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/liter colistin, albeit at a lower level than mcr-3 Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, Mcr-4, and Mcr-7 share a high degree of similarity at the structural level. Our results indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance.IMPORTANCE Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug-resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a "highest priority critically important antimicrobial for human medicine" (WHO, Critically Important Antimicrobials for Human Medicine, 5th revision, 2017, https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.201931064835
4909160.9993In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. INTRODUCTION: The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. METHODS: In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. RESULTS AND DISCUSSION: All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla (CMY2)-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.202336846779
5744170.9993Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then.201627506509
4906180.9993Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains. The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL) plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC) resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates and shows how these can contribute to transmission of resistance genes through the food chain.201525830294
4952190.9993Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria(1). Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection(2,3). Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E. coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.201931235960