# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4899 | 0 | 1.0000 | Chemiluminescent Carbapenem-Based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria. Carbapenemase-producing organisms (CPOs) pose a severe threat to antibacterial treatment due to the acquisition of antibiotic resistance. This resistance can be largely attributed to the antibiotic-hydrolyzing enzymes that the bacteria produce. Current carbapenem "wonder drugs", such as doripenem, ertapenem, meropenem, imipenem, and so on, are resistant to regular β-lactamases, but susceptible to carbapenemases. Even worse, extended exposure of bacteria to these drugs accelerates the spread of resistance genes. In order to preserve the clinical efficacy of antibacterial treatment, carbapenem drugs should be carefully regulated and deployed only in cases of a CPO infection. Early diagnosis is therefore of paramount importance. Herein, we report the design, synthesis, and activity of the first carbapenemase-sensitive chemiluminescent probe, CPCL, which may be used to monitor CPO activity. The design of our probe enables enzymatic cleavage of the carbapenem core, which is followed by a facile 1,8-elimination process and the emission of green light through rapid chemical excitation. We have demonstrated the ability of the probe to detect a number of clinically relevant carbapenemases and the successful identification of CPO present in bacterial cultures, such as those used for clinical diagnosis. We believe that our use of "turn-on" chemiluminescence activation will find significant application in future diagnostic assays and improve antibacterial treatment. | 2020 | 31957167 |
| 9917 | 1 | 0.9996 | Fluorescence-Based Detection of Natural Transformation in Drug-Resistant Acinetobacter baumannii. Acinetobacter baumannii is a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in the Acinetobacter genus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates of A. baumannii are resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinical A. baumannii isolates. To this end, we engineered a translational fusion between the abundant and conserved A. baumannii nucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animal A. baumannii isolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogen A. baumanniiIMPORTANCE Antibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agent Acinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described in A. baumannii and could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism in A. baumannii More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistant A. baumannii. | 2018 | 30012729 |
| 9752 | 2 | 0.9996 | Engineered Phages and Engineered and Recombinant Endolysins Against Carbapenem-Resistant Gram-Negative Bacteria: A Focused Review on Novel Antibacterial Strategies. Antibiotic resistance has escalated globally, affecting not only commonly used antibiotics but also last-resort agents such as carbapenems and colistin. The rise of antibiotic-resistant bacteria has prompted microbiologists to devise new strategies, with bacteriophages emerging as one of the most promising options. Nevertheless, certain mechanisms have been identified in bacteria that confer resistance to phages. While phage resistance is currently less widespread than antibiotic resistance, challenges such as biofilm formation, newly emerging resistance mechanisms against phages, and the natural limitations of unmodified phages have driven the advancement of engineered phages. This study aims to examine the efficacy of engineered phages and both engineered and recombinant endolysins against carbapenem-resistant Gram-negative bacteria (CR-GNB). We performed a literature review through PubMed, Scopus, Web of Science, and Google Scholar, concentrating on studies that utilized these agents against carbapenem-resistant Gram-negative bacteria (CR-GNB). Reviewed studies indicate potential antibacterial activity of these agents against CR-GNB. By engineering and modifying phages, these agents exhibit improved antimicrobial efficacy, temperature stability, and membrane permeability. Furthermore, they demonstrate the ability to eliminate bacteria with multidrug-resistant (MDR) and extensively drug-resistant (XDR) profiles. These findings suggest the promising potential of engineered phages and endolysins for future clinical applications against CR-GNB. | 2025 | 40696543 |
| 9800 | 3 | 0.9995 | Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance. | 1994 | 7723996 |
| 4248 | 4 | 0.9995 | Phage Display Technique: A Novel Medicinal Approach to Overcome An tibiotic Resistance by Using Peptide-Based Inhibitors Against β-Lactamases. The emergence of antibiotic resistance in bacteria is a serious threat with enormous social and economic implications. The distribution of resistance genes/markers through horizontal gene transfer leads to the dissemination of resistant strains in different parts of the world. The resistant bacteria acquire the ability to overcome resistance by different modes amongst which the expression of β-lactamases is a major factor. The β-lactamase enzymes cleave the amide bond of the β-lactam antibiotics, which constitute about one-third of the antibiotics used all over the world. In a quest to control the spread of resistant bacteria, advanced generations of antibiotics are used either alone or in combination with inhibitors. However, these antibiotics and inhibitors also contain β-lactam ring in their structure and hence are prone to be hydrolyzed by β-lactamase enzymes in the near future. Thus, the severity of the problem is manifested due to the paucity of novel non-β-lactam core containing antibiotics in the drug development stage. One approach to overcome these shortcomings is to use peptide-based inhibitors. Here, we describe the potential use of phage display technique to screen commercially available libraries to pan against β-lactamase enzymes. The main advantage of using peptide-based inhibitors is that the bacteria will not be able to recruit pre-existing defense mechanisms and it will take a long time to evolve a new mechanism in its defense against peptide-based inhibitors. | 2017 | 27465983 |
| 4839 | 5 | 0.9995 | beta-Lactamases: protein evolution in real time. The evolution and spread of bacteria resistant to beta-lactam antibiotics has progressed at an alarming rate. Bacteria may acquire resistance to a given drug by mutation of pre-existing genes or by the acquisition of new genes from other bacteria. One ongoing example of these mechanisms is the evolution of new variants of the TEM and SHV beta-lactamases with altered substrate specificity. | 1998 | 9746943 |
| 9892 | 6 | 0.9995 | Dissecting pOXA-48 fitness effects in clinical Enterobacterales using plasmid-wide CRISPRi screens. Conjugative plasmids are the main vehicle for the spread of antimicrobial resistance (AMR) genes in clinical bacteria. AMR plasmids allow bacteria to survive antibiotic treatments, but they also produce physiological alterations in their hosts that commonly translate into fitness costs. Despite the key role of plasmid-associated fitness effects in AMR evolution, their origin and molecular bases remain poorly understood. In this study, we introduce plasmid-wide CRISPR interference (CRISPRi) screens as a tool to dissect plasmid-associated fitness effects. We design and perform CRISPRi screens targeting the globally distributed carbapenem resistance plasmid pOXA-48 in 13 different multidrug resistant clinical Enterobacterales. Our results reveal that pOXA-48 gene-level effects are conserved across clinical strains, and expose the key role of the carbapenemase-encoding gene, bla(OXA-48), as the main culprit for pOXA-48 fitness costs. Moreover, our results highlight the relevance of postsegregational killing systems in pOXA-48 vertical transmission, and uncover new genes implicated in pOXA-48 stability (pri, korC, DNDJGHEP_13 and 14 and H-NS). This study sheds new light on the biology and evolution of carbapenem resistant Enterobacterales and endorses CRISPRi screens as a powerful method for studying plasmid-mediated AMR. | 2025 | 40825783 |
| 4260 | 7 | 0.9995 | Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. Resistance of the Enterobacteriaceae to antibiotics, especially of the β lactam type, is increasingly dominated by the mobilization of continuously expressed single genes that encode efficient drug modifying enzymes. Strong and ubiquitous selection pressure has seemingly been accompanied by a shift from "natural" resistance, such as inducible chromosomal enzymes, membrane impermeability, and drug efflux, to the modern paradigm of mobile gene pools that largely determine the epidemiology of modern antibiotic resistance. In this way, antibiotic resistance is more available than ever before to organisms such as Escherichia coli and Klebsiella pneumoniae that are important causes of major sepsis. Modulation of the phenotype by host bacteria makes gene transmission less obvious and may in part explain why tracking and control of carbapenem resistance has been particularly problematic in the Enterobacteriaceae. This review discusses the underlying principles and clinical implications of the mobility and fixation of resistance genes and the exploitable opportunities and potential threats arising from apparent limitations on diversity in these mobile gene pools. It also provides some illustrative paradoxes and clinical corollaries, as well as a summary of future options. | 2016 | 26858245 |
| 9791 | 8 | 0.9995 | Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control. | 2022 | 36042694 |
| 4237 | 9 | 0.9995 | Antibiotics: action and resistance in gram-negative bacteria. Therapeutic control of beta-lactamase-producing bacteria has been a major clinical problem in the past 40 years. Gram-negative bacteria are most often resistant to antibiotics as a result of the acquisition of resistant genes or gene mutation. Studies have shown that newly developed antibiotics will shortly fail to be active against the bacteria because of the emergence of resistance. Some resistant bacteria have been found to exist even before the antibiotic was developed. Selective pressure by the antibiotic is, therefore, one of the major factors to explain the increase of resistance. Recently, numerous resistant mechanisms that differ in their substrate profiles have been described at increasing frequencies. The inappropriate use of new antibiotics with extended spectrum further complicated the problem. Because resistance is a largely unavoidable consequence of widespread use of antibiotics, it is crucial that the use of drugs is selective by exercising prudent judgment and not excessive. The actual prevalence of resistance should be continuously monitored each year. Caution should be paid to the direct extrapolation of study results from other geographic areas, because the local prevalence of resistance is unlikely to be identical to those reported elsewhere. The impact of resistance to an antibiotic and its specific mechanisms, including transmissibility, should also be carefully studied. Such information may help in designing strategies for maximizing the therapeutic usefulness of drugs and minimizing the emergence of resistance. | 2002 | 11950113 |
| 4329 | 10 | 0.9995 | Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections. | 1993 | 8149138 |
| 9767 | 11 | 0.9995 | Metallo-β-lactamase NDM-1 serves as a universal vaccine candidate for combatting antimicrobial resistance. The rapid emergence and spread of antimicrobial resistance have become critical global health issues, leading to significant morbidity and mortality worldwide. With the increase in resistance to multiple drugs, especially frontline clinical antibiotics, there is an urgent need for novel and effective alternative strategies. Herein, we developed a vaccine targeting the antimicrobial resistance enzyme NDM-1, which was first identified in Klebsiella pneumoniae and has quickly spread to other gram-negative bacteria. Our results demonstrate that NDM-1 primarily triggers a humoral immune response and effectively protects mice from lethal Klebsiella pneumoniae infection, as evidenced by increased survival rates, reduced bacterial loads, and decreased lung inflammation in mice. The specific antibodies generated were able to inhibit the enzymatic activity of NDM-1, bacterial growth, and exhibit opsonophagocytic activity against Klebsiella pneumoniae in vitro. Both active and passive immunization with NDM-1 showed an additive effect when combined with meropenem therapy. Furthermore, NDM-1 immunization induced cross-reactivity with NDM-1 variants, potentially providing broad protection against bacteria carrying different NDM genes. Additionally, heptamerization of NDM-1 improved its immunogenicity and protective efficacy in mice. These results highlight the potential of vaccine development based on antibiotic resistance candidates for broadly combatting antimicrobial resistance. | 2025 | 40505900 |
| 4885 | 12 | 0.9995 | A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance. | 2025 | 40725449 |
| 9799 | 13 | 0.9995 | Microbiology and drug resistance mechanisms of fully resistant pathogens. The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles. | 2004 | 15451497 |
| 9916 | 14 | 0.9995 | Collateral sensitivity associated with antibiotic resistance plasmids. Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR. | 2021 | 33470194 |
| 3831 | 15 | 0.9995 | The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities. | 2023 | 37505800 |
| 9930 | 16 | 0.9995 | Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Bacteria have once again demonstrated their remarkably versatility in meeting the introduction of new classes of beta-lactam antibiotics by modifying available plasmid mediated beta-lactamases to expand their spectrum of action and by incorporating chromosomal beta-lactamase genes onto plasmids that permit their spread to new hosts. Such resistance is more common than presently is appreciated because current NCCLS breakpoints for resistance underestimate its prevalence. A number of risk factors for acquisition of ESBL-producing K. pneumoniae have been defined, but most will be no easier to control than those for infection by MRSA or VRE. More clinical and animal model studies are needed to evaluate options for treatment. Most strains remain susceptible to imipenem and other carbapenems, but carbapenem resistance has appeared either by spread of metallo-beta-lactamase or by production of an AmpC enzyme combined with loss of an outer membrane porin channel. Attack on our adversaries' latest biological weapons is likely to require enhanced versatility on our part as well. | 1997 | 9421705 |
| 8856 | 17 | 0.9995 | The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Bacteriophage therapy is currently being evaluated as a critical complement to traditional antibiotic treatment. However, the emergence of phage resistance is perceived as a major hurdle to the sustainable implementation of this antimicrobial strategy. By combining comprehensive genomics and microbiological assessment, we show that the receptor-modification resistance to capsule-targeting phages involves either escape mutation(s) in the capsule biosynthesis cluster or qualitative changes in exopolysaccharides, converting clones to mucoid variants. These variants introduce cross-resistance to phages specific to the same receptor yet sensitize to phages utilizing alternative ones. The loss/modification of capsule, the main Klebsiella pneumoniae virulence factor, did not dramatically impact population fitness, nor the ability to protect bacteria against the innate immune response. Nevertheless, the introduction of phage drives bacteria to expel multidrug resistance clusters, as observed by the large deletion in K. pneumoniae 77 plasmid containing bla(CTX-M) , ant(3″), sul2, folA, mph(E)/mph(G) genes. The emerging bacterial resistance to viral infection steers evolution towards desired population attributes and highlights the synergistic potential for combined antibiotic-phage therapy against K. pneumoniae. | 2021 | 33754440 |
| 4313 | 18 | 0.9995 | Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review. | 2008 | 18311156 |
| 5079 | 19 | 0.9995 | Development of a Rapid, Culture-Free, Universal Microbial Identification System Using Internal Transcribed Spacer Targeting Primers. The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes. To overcome the deficits of culture-based methods, we have developed a rapid universal bacterial identification system. The platform uses a unique universal polymerase chain reaction primer set that targets the internal transcribed spacer regions between conserved bacterial genes, creating a distinguishable amplicon signature for every bacterial species. Bioinformatic simulation demonstrates that nearly every bacteria in a set of 45 commonly isolated pathogenic species can be uniquely identified using this approach. We experimentally confirmed these predictions on a representative set of pathogenic bacterial species. We further showed that the system can determine the corresponding concentration of each pathogen. Finally, we validated performance in clinical urinary tract infection samples. | 2025 | 39503259 |