A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
488501.0000A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance.202540725449
488610.9999Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. Antimicrobial resistance (AMR) among bacteria is an escalating public health emergency that has worsened during the COVID-19 pandemic. When making antibiotic treatment decisions, clinicians rely heavily on determination of antibiotic susceptibility or resistance by the microbiology laboratory, but conventional methods often take several days to identify AMR. There are now several commercially available molecular methods that detect antibiotic resistance genes within hours rather than days. While these methods have limitations, they offer promise for optimizing treatment and patient outcomes, and reducing further emergence of AMR. This review provides an overview of commercially available genotypic assays that detect individual resistance genes and/or resistance-associated mutations in a variety of specimen types and discusses how clinical outcomes studies may be used to demonstrate clinical utility of such diagnostics.202336816746
488720.9999Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.202438700878
488830.9999A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.202337374993
489040.9999Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.202033081121
979050.9999Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs. Antimicrobial resistance (AMR) is a global health security threat requiring actions across government sectors and society. Many factors are involved in this phenomenon, being overuse of antibiotics, incorrect antibiotic prophylaxis, and use of antibiotics for zootechnic reasons the main causes of the increasing rate of multi-drug resistant (MDR) bacteria. The impact of resistance to antimicrobials is an important threat due also to the emergence of MDR Gram-negative bacteria resistant to carbapenems, and the lack of the research for new active molecules. The production of extended spectrum beta-lactamase enzymes has been the first threatening mechanism for Gram-negative resistance to antibiotics, which prompted the development of new classes of antibiotics such as carbapenems. Unfortunately, resistance to carbapenems developed because of multiple mechanisms including efflux pumps, porin mutations and enzyme production, being the latter particularly relevant in terms of diffusion due to the genes located within plasmids that drive their horizontal diffusion. In this scenario, antimicrobial stewardship programs (ASP) are a mandatory resource in fighting the resistance spread. The reduction of total amount of antibiotics administration in the hospital setting and guiding prescribers in the correct administration of antibiotics for the smallest period possible, at the correct dosage, can be defined as the first goals of an ASP. Anyway, in an efficacious ASP, apart from antibiotic administration, efforts must been made in ensuring the lowest probability of spreading of MDR by efficacious measures of isolation of carriers, and by offering tools for a rapid diagnosis of viral infections avoiding the administration of unnecessary antibiotics. A continuous audit of the ASP programs and a correct assessment of the allergy to drugs such as penicillin have to complete the program. Currently, only a few options are available for patients with an infection sustained by Gram-negative MDR bacteria. All the options actually available are based on the administration of colystin, an old drug whose real efficacy is reduced due to its relevant toxicity, or on the administration of recently proposed drugs such as ceftolozane-tazobactam, ceftazidime-avibactam and meropenem-vaborbactam. All these new drugs do not have a novel mechanism of action and have limited spectrum in term of activity against MDR bacteria. In conclusion, antimicrobial resistance is a global emergence and AMP is the most powerful tool actually available. Few limited options are available to treat infections due to Carbapenem Resistant Enterobacteria. Antimicrobial molecules with true novel mechanism of action are needed to win the fight against antimicrobial resistance.201931846984
432960.9998Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections.19938149138
488970.9998The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.202337630472
432880.9998Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines.200111379419
979190.9998Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control.202236042694
9806100.9998Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.202032586045
4332110.9998Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.201728258227
4330120.9998Decolonization of asymptomatic carriage of multi-drug resistant bacteria by bacteriophages? Antimicrobial resistance is a major threat to human and animal health and accounted for up to 4.5 million deaths worldwide in 2019. Asymptomatic colonization of the digestive tract by multidrug resistant (multi-resistant) bacteria such as extended-spectrum beta-lactamase-, or carbapenemase- producing Enterobacterales is (i) a risk factor for infection by these multi-resistant bacteria, (ii) a risk factor of dissemination of these multi-resistant bacteria among patients and in the community, and (iii) allows the exchange of resistance genes between bacteria. Hence, decolonization or reduction of the gastrointestinal tract colonization of these multi-resistant bacteria needs to be urgently explored. Developing new non-antibiotic strategies to limit or eradicate multi-resistant bacteria carriage without globally disrupting the microbiota is considered a priority to fight against antibiotic resistance. Probiotics or Fecal Microbiota Transplantation are alternative strategies to antibiotics that have been considered to decolonize intestinal tract from MDR bacteria but there is currently no evidence demonstrating their efficacy. Lytic bacteriophages are viruses that kill bacteria and therefore could be considered as a promising strategy to combat antibiotic resistance. Successful decolonization by bacteriophages has already been observed clinically. Here, we discuss the current alternative strategies considered to decolonize the digestive tract of multidrug resistant bacteria, briefly describing probiotics and fecal microbiota transplantation approaches, and then detail the in vivo and in vitro studies using bacteriophages, while discussing their limits regarding the animal models used, the characteristics of phages used and their activity in regards of the gut anatomy.202338075897
4856130.9998An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.202236422214
4317140.9998Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade.200111524705
4891150.9998From food to hospital: we need to talk about Acinetobacter spp. Some species of the genus Acinetobacter are admittedly important hospital pathogens. Additionally, various animal and plant foods have been linked to the presence of Acinetobacter, including resistant strains. However, due to isolation difficulties and the lack of official standard methods, there is a dearth of work and epidemiological data on foodborne diseases caused by this microorganism. Considering that Acinetobacter spp. may represent a serious public health problem, especially because of their resistance to carbapenems and colistin, and because of the fact that these pathogens may transfer resistance genes to other bacteria, studies are needed to evaluate the pathogenicity of both food and clinical isolates and to search for them using control strategies, such as the adoption of more efficient disinfection measures and use of antimicrobial substances (AMS). In contrast, AMS production by strains of the genus Acinetobacter has already been described, and its potential for application against other Gram-negative food or clinical pathogens, reveals a new field to be explored.202033134199
6620160.9998The growing burden of antimicrobial resistance. Since the first usage of antimicrobials, the burden of resistance among bacteria has progressively increased and has accelerated within the last 10 years. Antibiotic resistance genes were present at very low levels prior to the introduction of antibiotics and it is largely the selective pressure of antibiotic use and the resulting exposure of bacteria, not only in humans but also in companion and food animals and the environment, which has caused the rise. The increasing mobility across the globe of people, food and animals is another factor. Examples of this are the international pandemic of different genotypes of CTX-M extended-spectrum beta-lactamases (particularly CTX-M-14 and -15) and the emergence of the carbapenemase KPC-1 in both the USA and Israel. This review details examples of both the emergence and dissemination through different genetic routes, both direct and indirect selective pressure, of significance resistance in Staphylococcus aureus, Enterococcus species, Enterobacteriaceae and Pseudomonas/Acinetobacter. The response made by society to reduce resistance involves surveillance, reduced usage, improved infection control and the introduction of new antimicrobial agents. Although efforts are being made in all these areas, there is an urgent need to increase the effectiveness of these interventions or some bacterial infections will become difficult if not impossible to treat reliably.200818684701
4852170.9998Recent trends in antibiotic resistance in European ICUs. PURPOSE OF REVIEW: Antimicrobial resistance is an emerging problem in ICUs worldwide. As numbers of published results from national/international surveillance studies rise rapidly, the amount of new information may be overwhelming. Therefore, we reviewed recent trends in antibiotic resistance in ICUs across Europe in the past 18 months. RECENT FINDINGS: In this period, infections caused by methicillin-resistant Staphylococcus aureus appeared to stabilize (and even decrease) in some countries, and infection rates due to Gram-positive bacteria resistant to vancomycin, linezolid or daptomycin have remained low. In contrast, we are witnessing a continent-wide emergence of infections caused by multiresistant Gram-negative bacteria, especially Escherichia coli and Klebsiella pneumoniae, with easily exchangeable resistance genes located on plasmids, producing enzymes such as extended spectrum β-lactamases and carbapenamases. In the absence of new antibiotics, prevention of infections, reducing unnecessary antibiotic use, optimizing adherence to universal hygienic and infection control measures, and improving implementation of diagnostic tests are our only tools to combat this threat. SUMMARY: As the epidemiology of antibiotic resistance in ICUs is rapidly changing toward more frequently occurring epidemics and endemicity of multi and panresistant Gram-negative pathogens, better infection control and improved diagnostics will become even more important than before.201121986462
4757180.9998Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.201424867792
4318190.9998Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance.199610879217