# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4882 | 0 | 1.0000 | Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC. | 2022 | 36011308 |
| 4892 | 1 | 0.9998 | Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach. | 2021 | 34832511 |
| 4884 | 2 | 0.9998 | Multidrug resistance efflux pump expression in uropathogenic Gram-negative bacteria in organ transplant recipients. Urinary tract infections (UTIs) are common in healthcare settings and communities; and are predominantly caused by Gram-negative bacteria, which account for > 70% of UTI cases. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are the most common bacterial agents responsible for UTIs. The emergence of antibiotic resistance poses a challenge for UTI treatment; and efflux pump overexpression contributes to Gram-negative bacterial resistance. This comprehensive review summarizes the current understanding of multidrug resistance (MDR) efflux pump expression in prevalent Gram-negative bacteria that demonstrate resistance to antibiotics predominantly used for UTI treatment. This review examines the available data, and offers insights into the role of efflux pumps in conferring MDR to UTI-causing bacteria. Understanding these resistance mechanisms is crucial for developing effective strategies to combat antibiotic resistance in UTI management. Furthermore, this review emphasizes the need to characterize efflux pump-mediated antimicrobial resistance in solid organ transplantation cases. Solid organ transplant recipients are particularly vulnerable to UTIs caused by MDR bacteria, posing a serious threat to their health and recovery. Identifying the efflux pump profiles of these bacterial strains can guide appropriate antibiotic choices and optimize treatment outcomes in transplant recipients. By consolidating existing knowledge on efflux pump expression in antibiotic-resistant Gram-negative bacteria associated with UTIs, this review acknowledges gaps and identifies the future scope of research that should address the growing challenge of MDR UTIs, particularly in high-risk populations such as solid organ transplant recipients. | 2025 | 40452526 |
| 4157 | 3 | 0.9998 | Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Multidrug resistance among pathogenic bacteria is imperilling the worth of antibiotic infection, which has become an emerging problem, which previously transformed the veterinary sciences. Since its discovery, many antibiotics have been effective in treating bacterial infections in animals. Escherichia coli, a bacterium, is one of the reservoirs of antibiotic resistance genes in a community. The current use of antibiotics and demographic factors usually increase multidrug resistance. Genetically, the continuous adoption of environmental changes by E. coli allows it to acquire many multidrug resistance. During the host's life, antimicrobial resistance rarely poses a threat to the E. coli strain and pressure, similar to that of a flexible animal lower intestine. In this review, we describe the E. coli antibiotic drug-resistance mechanism driving transmission, the causes of transmission and the harmful effects on animal health. | 2022 | 35608149 |
| 4330 | 4 | 0.9998 | Decolonization of asymptomatic carriage of multi-drug resistant bacteria by bacteriophages? Antimicrobial resistance is a major threat to human and animal health and accounted for up to 4.5 million deaths worldwide in 2019. Asymptomatic colonization of the digestive tract by multidrug resistant (multi-resistant) bacteria such as extended-spectrum beta-lactamase-, or carbapenemase- producing Enterobacterales is (i) a risk factor for infection by these multi-resistant bacteria, (ii) a risk factor of dissemination of these multi-resistant bacteria among patients and in the community, and (iii) allows the exchange of resistance genes between bacteria. Hence, decolonization or reduction of the gastrointestinal tract colonization of these multi-resistant bacteria needs to be urgently explored. Developing new non-antibiotic strategies to limit or eradicate multi-resistant bacteria carriage without globally disrupting the microbiota is considered a priority to fight against antibiotic resistance. Probiotics or Fecal Microbiota Transplantation are alternative strategies to antibiotics that have been considered to decolonize intestinal tract from MDR bacteria but there is currently no evidence demonstrating their efficacy. Lytic bacteriophages are viruses that kill bacteria and therefore could be considered as a promising strategy to combat antibiotic resistance. Successful decolonization by bacteriophages has already been observed clinically. Here, we discuss the current alternative strategies considered to decolonize the digestive tract of multidrug resistant bacteria, briefly describing probiotics and fecal microbiota transplantation approaches, and then detail the in vivo and in vitro studies using bacteriophages, while discussing their limits regarding the animal models used, the characteristics of phages used and their activity in regards of the gut anatomy. | 2023 | 38075897 |
| 4880 | 5 | 0.9998 | Molecular mechanisms of tigecycline-resistance among Enterobacterales. The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin. | 2024 | 38655285 |
| 9792 | 6 | 0.9998 | Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. The emergence of antibiotic resistant bacteria in the healthcare is a serious concern. In the Healthcare premises precisely intensive care unit are major sources of microbial diversity. Recent findings have demonstrated not only microbial diversity but also drug resistant microbes largely habitat in ICU. Pseudomonas aeruginosa found as a part of normal intestinal flora and a significant pathogen responsible for wide range of ICU acquired infection in critically ill patients. Nosocomial infection associated with this organism including gastrointestinal infection, urinary tract infections and blood stream infection. Infection caused by this organism are difficult to treat because of the presence of its innate resistance to many antibiotics (β-lactam and penem group of antibiotics), and its ability to acquire further resistance mechanism to multiple class of antibiotics, including Beta-lactams, aminoglycosides and fluoroquinolones. In the molecular evolution microbes adopted several mechanism to maintain genomic plasticity. The tool microbe use for its survival is mainly biofilm formation, quorum sensing, and horizontal gene transfer and enzyme promiscuity. Such genomic plasticity provide an ideal habitat to grow and survive in hearse environment mainly antibiotics pressure. This review focus on infection caused by Pseudomonas aeruginosa, its mechanisms of resistance and available treatment options. The present study provides a systemic review on major source of Pseudomonas aeruginosa in ICU. Further, study also emphasizes virulence gene/s associated with Pseudomonas aeruginosa genome for extended drug resistance. Study gives detailed overview of antibiotic drug resistance mechanism. | 2019 | 31194018 |
| 4879 | 7 | 0.9998 | Prevalence of polymyxin resistance through the food chain, the global crisis. Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity. | 2022 | 35079146 |
| 4873 | 8 | 0.9998 | Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Colistin resistance has attracted substantial attention after colistin was considered as a last-resort drug for the treatment of infections caused by carbapenem-resistant and/or multidrug-resistant (MDR) Gram-negative bacteria in clinical settings. However, with the discovery of highly mobile colistin resistance (mcr) genes, colistin resistance has become an increasingly urgent issue worldwide. Despite many reviews, which summarized the prevalence, mechanisms, and structures of these genes in bacteria of human and animal origin, studies on the prevalence of mobile colistin resistance genes in aquaculture and their transmission between animals and humans remain scarce. Herein, we review recent reports on the prevalence of colistin resistance genes in animals, especially wildlife and aquaculture, and their possibility of transmission to humans via the food chain. This review also gives some insights into the routine surveillance, changing policy and replacement of polymyxins by polymyxin derivatives, molecular inhibitors, and traditional Chinese medicine to tackle colistin resistance. | 2020 | 32114703 |
| 4869 | 9 | 0.9998 | Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past few decades. This increase has been attributed to a combination of microbial characteristics, the selective pressure of antimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. The resistance is acquired by mutational change or by the acquisition of resistance-encoding genetic material which is transferred from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuse of antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greater number of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistant organisms. The resistance gene sequences are integrated by recombination into several classes of naturally occurring gene expression cassettes and disseminated within the microbial population by horizontal gene transfer mechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in the intensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistant organisms. Methicillin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum beta-lactamase (ESBL) producing Gram negative bacilli are identified as major problem in nosocomial infections. Recent surveillance studies have demonstrated trend towards more seriously ill patients suffering from multidrug-resistant nosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce the application of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures, infection prevention and control of horizontal nosocomial transmission of organisms. | 2003 | 12791177 |
| 4862 | 10 | 0.9998 | Genetic Factors That Contribute to Antibiotic Resistance through Intrinsic and Acquired Bacterial Genes in Urinary Tract Infections. The overprescribing and misuse of antibiotics have led to the rapid development of multidrug-resistant bacteria, such as those that cause UTIs. UTIs are the most common outpatient infections and are mainly caused by Escherichia coli and Klebsiella spp., although some Gram-positive bacteria, such as Pseudomonas aeruginosa, have been isolated in many cases. The rise of antimicrobial-resistant bacteria is a major public health concern, as it is predicted to lead to increased healthcare costs and poor patient outcomes and is expected to be the leading cause of global mortality by 2050. Antibiotic resistance among bacterial species can arise from a myriad of factors, including intrinsic and acquired resistance mechanisms, as well as mobile genetic elements, such as transposons, integrons, and plasmids. Plasmid-mediated resistance is of major concern as drug-resistance genes can quickly and efficiently spread across bacterial species via horizontal gene transfer. The emergence of extended-spectrum β-lactamases (ESBLs) such as NDM-1, OXA, KPC, and CTX-M family members has conferred resistance to many commonly used antibiotics in the treatment of UTIs, including penicillins, carbapenems, cephalosporins, and sulfamethoxazole. This review will focus on plasmid-mediated bacterial genes, especially those that encode ESBLs, and how they contribute to antibiotic resistance. Early clinical detection of these genes in patient samples will provide better treatment options and reduce the threat of antibiotic resistance. | 2023 | 37374909 |
| 4883 | 11 | 0.9998 | New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics. | 2023 | 35649163 |
| 6631 | 12 | 0.9998 | Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed. | 2018 | 29554996 |
| 6610 | 13 | 0.9998 | The Gut Microbiome and Colistin Resistance: A Hidden Driver of Antimicrobial Failure. Colistin, a polymyxin antibiotic reintroduced as a last-resort therapy against multidrug-resistant Gram-negative bacteria, is increasingly being compromised by the emergence of plasmid-mediated colistin resistance genes (mcr-1 to mcr-10). The human gut microbiota serves as a major reservoir and transmission hub for these resistance determinants, even among individuals without prior colistin exposure. This review explores the mechanisms, dissemination, and clinical implications of mcr-mediated colistin resistance within the gut microbiota, highlighting its role in horizontal gene transfer, colonization, and environmental persistence. A comprehensive synthesis of the recent literature was conducted, focusing on epidemiological studies, molecular mechanisms, neonatal implications and decolonization strategies. The intestinal tract supports the enrichment and exchange of mcr genes among commensal and pathogenic bacteria, especially under antibiotic pressure. Colistin use in agriculture has amplified gut colonization with resistant strains in both animals and humans. Surveillance gaps remain, particularly in neonatal populations, where colonization may occur early and persist silently. Promising interventions, such as fecal microbiota transplantation and phage therapies, are under investigation but lack large-scale clinical validation. The gut microbiome plays a central role in the global spread of colistin resistance. Mitigating this threat requires integrated One Health responses, improved diagnostics for gut colonization, and investment in microbiome-based therapies. A proactive, multisectoral approach is essential to safeguard colistin efficacy and address the expanding threat of mcr-mediated resistance. | 2025 | 41009471 |
| 6617 | 14 | 0.9998 | Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans. | 2025 | 40386099 |
| 4314 | 15 | 0.9998 | Cephalosporin resistance among animal-associated Enterobacteria: a current perspective. Beta-lactam antimicrobials are an important class of drugs used for the treatment of infection. Resistance can arise by several mechanisms, including the acquisition of genes encoding beta-lactamases from other bacteria, alterations in cell membrane permeability and over expression of endogenous beta-lactamases. The acquisition of beta-lactamase resistance genes by both Salmonella and Escherichia coli appears to be on the rise, which may pose potential problems for the treatment of infections in both human and animal medicine. The prudent use of clinically important antimicrobials is therefore critical to maintain their effectiveness. Where possible, the use of newer generation cephalosporins should be limited in veterinary medicine. | 2005 | 15954857 |
| 4893 | 16 | 0.9998 | Molecular Characterization of Multidrug-Resistant Shigella flexneri. Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment. | 2024 | 38435906 |
| 4332 | 17 | 0.9998 | Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. | 2017 | 28258227 |
| 4319 | 18 | 0.9998 | Threat and Control of tet(X)-Mediated Tigecycline-Resistant Acinetobacter sp. Bacteria. Tigecycline is regarded as one of the last-resort antibiotics against multidrug-resistant (MDR) Acinetobacter sp. bacteria. Recently, the tigecycline-resistant Acinetobacter sp. isolates mediated by tet(X) genes have emerged as a class of global pathogens for humans and food-producing animals. However, the genetic diversities and treatment options were not systematically discussed in the era of One Health. In this review, we provide a detailed illustration of the evolution route, distribution characteristics, horizontal transmission, and rapid detection of tet(X) genes in diverse Acinetobacter species. We also detail the application of chemical drugs, plant extracts, phages, antimicrobial peptides (AMPs), and CRISPR-Cas technologies for controlling tet(X)-positive Acinetobacter sp. pathogens. Despite excellent activities, the antibacterial spectrum and application safety need further evaluation and resolution. It is noted that deep learning is a promising approach to identify more potent antimicrobial compounds. | 2025 | 41097540 |
| 4317 | 19 | 0.9998 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |