# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 481 | 0 | 1.0000 | Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. The Klip River has suffered from severe anthropogenic effects from industrial activities such as mining. Long-term exposure to heavy metal pollution has led to the development of heavy metal resistant strains of Pseudomonas sp. KR23, Lysinibacillus sp. KR25, and E. coli KR29. The objectives of this study were to characterize the genetics of copper and chromate resistance of the isolates. Copper and chromate resistance determinants were cloned and sequenced. Open reading frames (ORFs) related to the genes CopA and CopR were identified in E. coli KR29, PcoA in Lysinibacillus sp. KR25 and none related to chromate resistance were detected. The 3D-models predicted by I-TASSER disclose that the PcoA proteins consist of β-sheets, which form a part of the cupredoxin domain of the CopA copper resistance family of genes. The model for PcoR_29 revealed the presence of a helix turn helix; this forms part of a DNA binding protein, which is part of a heavy metal transcriptional regulator. The bacterial strains were cured using ethidium bromide. The genes encoding for heavy metal resistance and antibiotic resistance were found to be located on the chromosome for both Pseudomonas sp. (KR23) and E. coli (KR29). For Lysinibacillus (KR25) the heavy metal resistance determinants are suspected to be located on a mobile genetic element, which was not detected using gel electrophoresis. | 2015 | 25837632 |
| 6156 | 1 | 0.9993 | Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. A PCR approach was developed to assess the occurrence and diversity of arsenite transporters in arsenic-resistant bacteria. For this purpose, three sets of degenerate primers were designed for the specific amplification of approximately 750bp fragments from arsB and two subsets of ACR3 (designated ACR3(1) and ACR3(2)) arsenite carrier gene families. These primers were used to screen a collection of 41 arsenic-resistant strains isolated from two soil samples with contrasting amounts of arsenic. PCR results showed that 70.7% of the isolates contained a gene related to arsB or ACR3, with three of them carrying both arsB and ACR3-like genes. Phylogenetic analysis of the protein sequences deduced from the amplicons indicated a prevalence of arsB in Firmicutes and Gammaproteobacteria, while ACR3(1) and ACR3(2) were mostly present in Actinobacteria and Alphaproteobacteria, respectively. In addition to validating the use of degenerate primers for the identification of arsenite transporter genes in a taxonomically wide range of bacteria, the study describes a novel collection of strains displaying interesting features of resistance to arsenate, arsenite and antimonite, and the ability to oxidize arsenite. | 2007 | 17258434 |
| 486 | 2 | 0.9993 | Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Resistance to a range of heavy metal ions was determined for lead-resistant and other bacteria which had been isolated from a battery-manufacturing site contaminated with high concentration of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) and Gram-negative (Alcaligenes species) isolates were resistant to lead, mercury, cadmium, cobalt, zinc and copper, although the levels of resistance to the different metal ions were specific for each isolate. Polymerase chain reaction, DNA-DNA hybridization and DNA sequencing were used to explore the nature of genetic systems responsible for the metal resistance in eight of the isolates. Specific DNA sequences could be amplified from the genomic DNA of all the isolates using primers for sections of the mer (mercury resistance determinant on the transposon Tn501) and pco (copper resistance determinant on the plasmid pRJ1004) genetic systems. Positive hybridizations with mer and pco probes indicated that the amplified segments were highly homologous to these genes. Some of the PCR products were cloned and partially sequenced, and the regions sequenced were highly homologous to the appropriate regions of the mer and pco determinants. These results demonstrate the wide distribution of mercury and copper resistance genes in both Gram-positive and Gram-negative isolates obtained from this lead-contaminated soil. In contrast, the czc (cobalt, zinc and cadmium resistance) and chr (chromate resistance) genes could not be amplified from DNAs of some isolates, indicating the limited contribution, if any, of these genetic systems to the metal ion resistance of these isolates. | 1997 | 9342884 |
| 487 | 3 | 0.9992 | Chromosome-encoded inducible copper resistance in Pseudomonas strains. Nine Pseudomonas strains were selected by their high copper tolerance from a population of bacteria isolated from heavy-metal polluted zones. Copper resistance (Cu(r)) was inducible by previous exposure of cultures to subinhibitory amounts of copper sulfate. All nine strains possessed large plasmids, but transformation and curing results suggest that Cu(r) is conferred by chromosomal genes. Plasmid-less Pseudomonas aeruginosa PAO-derived strains showed the same level of Cu(r) as environmental isolates and their resistance to copper was also inducible. Total DNA from the environmental Pseudomonas, as well as from P. aeruginosa PAO strains, showed homology to a Cu(r) P. syringae cop probe at low-stringency conditions but failed to hybridize at high-stringency conditions. | 1995 | 8572680 |
| 483 | 4 | 0.9992 | Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Transposons closely related to mercury resistance transposons Tn5041, Tn5053, and Tn5056, which have been previously described in present-day bacteria, were detected in a survey of 12 mercury-resistant Pseudomonas strains isolated from permafrost samples aged 15-40 thousand years. In addition, Tn5042, a novel type of mercury resistance transposon, was revealed in the permafrost strain collection and its variants found to be common among present-day bacteria. The results reveal that no drastic changes in the distribution mode of the different types of mercury resistance transposons among environmental bacteria have taken place in the last 15-40 thousand years. | 2005 | 16084067 |
| 267 | 5 | 0.9992 | Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil. PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil. | 2005 | 15640241 |
| 3712 | 6 | 0.9992 | Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Arsenic is a toxic element that exists in two major inorganic forms, arsenate and arsenite. A number of bacteria have been shown to resist arsenic exposure, and even more bacteria appear to possess the genes for arsenic resistance. In this study, the numbers of culturable arsenate-resistant bacteria present in water at three coastal sites in the Lake Pontchartrain estuary, Louisiana, was determined. Despite insignificant (less than 1.33 microM) levels of arsenic in this system, 20-50% of the viable count of bacteria showed appreciable arsenate resistance, suggesting that arsenic-resistant bacteria are common and widespread. A diverse array of arsenate-resistant isolates was obtained, with 16S rRNA sequence analysis indicating 37 different bacterial strains, representing six major bacterial groups. Many of these isolates were affiliated with groups of bacteria that have been poorly characterized in terms of arsenic resistance, such as the Betaproteobacteria or Flavobacteria. Some isolates were capable of tolerating very high (> 100 mM) levels of arsenate, although arsenite resistance was generally much lower. The results suggest that arsenic-resistant bacteria are common, even in environments with insignificant arsenic contamination, and that many different groups of aquatic bacteria show appreciable arsenic resistance. | 2005 | 16261862 |
| 477 | 7 | 0.9992 | Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. | 2007 | 17675438 |
| 3601 | 8 | 0.9992 | R factors mediate resistance to mercury, nickel, and cobalt. Fifty-five clinical isolates and laboratory stocks of Escherichia coli and Salmonella were studied for resistance to each of ten metals. Eleven clinical isolates carrying R factors were resistant to mercury, and, in each case, the resistance was mediated by a previously undefined R-factor gene. The gene was phenotypically expressed within 2 to 4 minutes after entry into sensitive bacteria, but the basis for the resistance remains undefined. Fourteen strains, 12 infected with R factors, were resistant to cobalt and nickel, but these resistances were mediated by R-factor genes in only two strains; separate R-factor genes mediated the resistances to nickel and cobalt. These and other results indicate that the genetic composition of R factors is greater than that originally defined. | 1967 | 5337360 |
| 6109 | 9 | 0.9992 | Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment. | 2014 | 24764001 |
| 6157 | 10 | 0.9992 | Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers. | 2012 | 21879358 |
| 3710 | 11 | 0.9992 | Tolerance to various toxicants by marine bacteria highly resistant to mercury. Bacteria highly resistant to mercury isolated from seawater and sediment samples were tested for growth in the presence of different heavy metals, pesticides, phenol, formaldehyde, formic acid, and trichloroethane to investigate their potential for growth in the presence of a variety of toxic xenobiotics. We hypothesized that bacteria resistant to high concentrations of mercury would have potential capacities to tolerate or possibly degrade a variety of toxic materials and thus would be important in environmental pollution bioremediation. The mercury-resistant bacteria were found to belong to Pseudomonas, Proteus, Xanthomonas, Alteromonas, Aeromonas, and Enterobacteriaceae. All these environmental bacterial strains tolerant to mercury used in this study were capable of growth at a far higher concentration (50 ppm) of mercury than previously reported. Likewise, their ability to grow in the presence of toxic xenobiotics, either singly or in combination, was superior to that of bacteria incapable of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids. | 2003 | 12876655 |
| 5961 | 12 | 0.9991 | Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences. | 2011 | 21281423 |
| 484 | 13 | 0.9991 | Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. We have isolated 25 new strains of streptomycetes from soil samples of a polluted site at the former uranium mine, Wismut, in eastern Thuringia, Germany. The strains grew on medium containing 1 mM NiCl2 and thus were resistant to the heavy metal ion. Seven of the strains were further characterized. All of these strains were resistant to heavy metals in various degrees with up to 10 mM resistance against NiCl2 supplied with the liquid minimal growth medium. The high level of resistance prompted us to look for high affinity nickel transporter genes thought to provide a means to eliminate the excess nickel ions form the cells. Degenerate oligonucleotide primers derived from sequences of P-type ATPase transporter genes of Gram negative bacteria identified a fragment which shows deduced amino acid sequence similarities to known high affinity nickel transporters. Investigation of two genes obtained from the isolates Streptomyces spec. E8 and F4 showed high sequence divergence. This was unexpected since a transmissible plasmid had been thought to convey heavy metal resistance. | 2000 | 11199488 |
| 268 | 14 | 0.9991 | Amplification of bacitracin transporter genes in the bacitracin producing Bacillus licheniformis. We have amplified the previously cloned and sequenced genes of the bacitracin exporter (bcr), a member of the ATP-binding transport protein family, within the chromosome of the bacitracin producing Bacillus licheniformis. Amplification of the transporter genes was followed by greatly increased bacitracin resistance. Antibiotic production was enhanced at a low level of bcr genes amplification. An enlarged increase in the copy number of the bcr genes negatively affects the overall growth of bacteria. | 1997 | 9418256 |
| 188 | 15 | 0.9991 | Resistance to ag(i) cations in bacteria: environments, genes and proteins. Bacterial resistance to Ag(I) has been reported periodically with isolates from many environments where toxic levels of silver might be expected to occur, but initial reports were limited to the occurrence of resistant bacteria. The availability of silver-resistance conferring DNA sequences now allow genetic and mechanistic studies that had basically been missing. The genes determining Ag(I) resistance were sequenced from a plasmid found in a burn ward isolate. The 14.2 kb determinant contains seven recognized genes, arranged in three mRNA transcriptional units. The silE gene determines an extracellular (periplasmic space) metal-binding protein of 123 amino acids, including ten histidine residues implicated in Ag(I) binding. SilE is homologous to PcoE, of copper resistance. The next two genes, silR and silS, determine a two protein, histidine-kinase membrane sensor and aspartyl phosphate transcriptional responder, similar to other two component systems such as CzcR and CzcS (for cadmium, zinc and cobalt resistance) and PcoR and PcoS (for copper resistance). The remaining four genes, silCBAP, are co-transcribed and appear to determine Ag(+) efflux, with SilCBA homologous to CzcCBA, a three component cation/proton antiporter, and SilP a novel P-type ATPase with a amino-terminal histidine-rich cation-specificity region. The effects of increasing Ag(+) concentrations and growth medium halides (Cl-, Br- and I-) have been characterized, with lower Cl- concentrations facilitating resistance and higher concentrations toxicity. The properties of this unique Ag(I)-binding SilE protein are being characterized. Sequences similar to the silver-resistance DNA are being characterized by Southern blot DNA/DNA hybridization, PCR in vitro DNA synthesis and DNA sequencing. More than 25 additional closely related sequences have been identified in bacteria from diverse sources. Initial DNA sequencing results shows approximately 5-20% differences in DNA sequences. | 1999 | 18475907 |
| 6346 | 16 | 0.9991 | Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics. | 2021 | 33675438 |
| 6108 | 17 | 0.9991 | Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BACKGROUND: Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III) and As(V)] and can be transformed by microbial redox processes in the natural environment. As(III) is much more toxic and mobile than As(V), hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III) resistance levels and related functional genes of these species. RESULTS: A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM) were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1) and 21 ACR3(2)] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB) and an arsenite transporter gene (ACR3 or arsB) displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2) and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. CONCLUSION: Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in part by horizontal gene transfer events. Bacteria capable of both arsenite oxidation and arsenite efflux mechanisms had an elevated arsenite resistance level. | 2009 | 19128515 |
| 4662 | 18 | 0.9991 | Characterization of a multiresistant mosaic plasmid from a fish farm Sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. | 2014 | 24362420 |
| 442 | 19 | 0.9991 | Mercuric reductase in environmental gram-positive bacteria sensitive to mercury. According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria. | 1992 | 1427009 |