# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4815 | 0 | 1.0000 | The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. When choosing antibiotics to treat bacterial infections, it is assumed that the susceptibility of the target bacteria to an antibiotic is reflected by laboratory estimates of the minimum inhibitory concentration (MIC) needed to prevent bacterial growth. A caveat of using MIC data for this purpose is heteroresistance, the presence of a resistant subpopulation in a main population of susceptible cells. We investigated the prevalence and mechanisms of heteroresistance in 41 clinical isolates of the pathogens Escherichia coli, Salmonella enterica, Klebsiella pneumoniae and Acinetobacter baumannii against 28 different antibiotics. For the 766 bacteria-antibiotic combinations tested, as much as 27.4% of the total was heteroresistant. Genetic analysis demonstrated that a majority of heteroresistance cases were unstable, with an increased resistance of the subpopulations resulting from spontaneous tandem amplifications, typically including known resistance genes. Using mathematical modelling, we show how heteroresistance in the parameter range estimated in this study can result in the failure of antibiotic treatment of infections with bacteria that are classified as antibiotic susceptible. The high prevalence of heteroresistance with the potential for treatment failure highlights the limitations of MIC as the sole criterion for susceptibility determinations. These results call for the development of facile and rapid protocols to identify heteroresistance in pathogens. | 2019 | 30742072 |
| 4816 | 1 | 0.9999 | Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs. | 2024 | 38489041 |
| 4722 | 2 | 0.9998 | Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract. | 2019 | 30938219 |
| 4723 | 3 | 0.9998 | Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. | 2025 | 39536720 |
| 4817 | 4 | 0.9998 | Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates. | 2019 | 30142035 |
| 5837 | 5 | 0.9998 | The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials. | 2017 | 28198411 |
| 5838 | 6 | 0.9998 | Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug. | 2024 | 39203486 |
| 6266 | 7 | 0.9998 | Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis. | 2012 | 23022568 |
| 4754 | 8 | 0.9998 | Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria. | 2007 | 17659211 |
| 5759 | 9 | 0.9998 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 4647 | 10 | 0.9998 | Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection. | 2016 | 26872140 |
| 5836 | 11 | 0.9998 | Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. | 2010 | 20953948 |
| 4857 | 12 | 0.9998 | The emergence of bacterial resistance and its influence on empiric therapy. The discovery of antimicrobial agents had a major impact on the rate of survival from infections. However, the changing patterns of antimicrobial resistance caused a demand for new antibacterial agents. Within a few years of the introduction of penicillin, the majority of staphylococci were resistant to that drug. In the 1960s the production of the semisynthetic penicillins provided an answer to the problem of staphylococcal resistance. In the early 1960s most Escherichia coli were susceptible to the new beta-lactam antibiotic ampicillin; by the end of that decade, plasmid-mediated beta-lactamase resistance was found in 30%-50% of hospital-acquired E. coli. Use of certain agents resulted in the selection of bacteria, such as Klebsiella, that are intrinsically resistant to ampicillin. The original cephalosporins were stable to beta-lactamase, but the use of these agents was in part responsible for the appearance of infections due to Enterobacter species, Citrobacter species, and Pseudomonas aeruginosa. These bacteria, as well as Serratia, were resistant to many of the available beta-lactam agents. Aminoglycosides initially provided excellent activity against most of the facultative gram-negative bacteria. However, the widespread dissemination of the genes that cause production of the aminoglycoside-inactivating enzymes altered the use of those agents. Clearly, the evolution of bacterial resistance has altered the prescribing patterns for antimicrobial agents. Knowledge that beta-lactam resistance to ampicillin or cephalothin is prevalent is causing physicians to select as empiric therapy either a combination of two or more agents or agents to which resistance is uncommon. The new cephalosporins offer a broad spectrum of anti-bacterial activity coupled with low toxicity. However, physicians must closely follow the changing ecology of bacteria when these agents are used, because cephalosporins can also select bacteria resistant to themselves and thereby abolish their value as empiric therapy. | 1983 | 6342103 |
| 4720 | 13 | 0.9998 | Augmentation of antibiotic resistance in Salmonella typhimurium DT104 following exposure to penicillin derivatives. Antibiotic resistance in pathogenic bacteria has been a problem in both developed and developing countries. This problem is especially evident in Salmonella typhimurium, one of the most prevalent foodborne pathogens. While performing in vitro gentamicin protection-based invasion assays, we found that certain isolates of multiresistant S. typhimurium can be 'induced' to exhibit new resistance profiles. That is, bacteria become resistant to a wider range of antibiotics and they also exhibit quantitative increases in MIC values for antibiotics that were part of their pre-induction antibiograms. This 'induction' process involves growing the bacteria to stationary phase in the presence of antibiotics such as ampicillin, amoxicillin or ticarcillin. Since the isolates studied exhibited resistance to ampicillin, amoxicillin and ticarcillin prior to exposing the bacteria to these antibiotics, the observed phenomenon suggests that resistant Salmonella not only have a selective advantage over non-resistant Salmonella but their resistance phenotypes can be accentuated when an inappropriate antibiotic is used therapeutically. | 2000 | 10731615 |
| 6263 | 14 | 0.9998 | Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype. | 2021 | 33875431 |
| 4786 | 15 | 0.9998 | Novel Antimicrobial Target in Acinetobacter Baumannii. BACKGROUND: Resistance to multiple drugs is one of the biggest challenges in managing infectious diseases. Acinetobacter baumannii is considered a nosocomial infection. According to the multiple roles of the toxin-antitoxin system, this system can be considered an antimicrobial target in the presence of bacteria. With the impact on bacterial toxin, it can be used as a new antibacterial target. The purpose of this study was to determine the mazEF genes as a potent antimicrobial target in A. baumannii clinical isolates. METHODS: The functionality of mazEF genes was evaluated by qPCR in fifteen A. baumannii clinical isolates. Then, the mazE locus was targeted by peptide nucleic acid (PNA). RESULTS: The results showed a significant difference in the mean number of copies of mazF gene in normal and stress conditions. Also, we found that at a concentration of 15 µM of PNA the bacteria were killed and confirmed by culture on LB agar. CONCLUSIONS: This research is the first step in introducing mazEF TA loci as a sensitive target in A. baumannii. However, more studies are needed to test the effectiveness in vivo. In addition, the occurrence and potential for activation of the TA system, mazEF in other pathogenic bacteria should be further investigated. | 2022 | 35536074 |
| 9757 | 16 | 0.9998 | Effects of different mechanisms on antimicrobial resistance in Pseudomonas aeruginosa: a strategic system for evaluating antibiotics against gram-negative bacteria. Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using Klebsiella pneumoniae and Acinetobacter baumannii. However, it lacked resistance mechanisms specifically expressed only in Pseudomonas species. In this study, we constructed this system using Pseudomonas aeruginosa. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible P. aeruginosa strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from P. aeruginosa KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in P. aeruginosa. Building upon our previous studies on K. pneumoniae and A. baumannii, this strategic system, including a P. aeruginosa panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for P. aeruginosa was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance. | 2025 | 40042282 |
| 6276 | 17 | 0.9998 | A shared mechanism of multidrug resistance in laboratory-evolved uropathogenic Escherichia coli. The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low Amp(R) and High Amp(R), respectively. Whole-genome sequencing revealed that both Low and High Amp(R) strains contained mutations in the marR, acrR, and envZ genes. The High Amp(R) strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the Amp(R) strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the Amp(R) strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the Amp(R) strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics. | 2024 | 38899601 |
| 5761 | 18 | 0.9998 | The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant. | 2021 | 34987489 |
| 6275 | 19 | 0.9998 | Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens. | 2019 | 30268576 |