Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
479301.0000Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.202033402829
479210.9999Antibiotic resistance in the staphylococci. There has been much interest in the media, international as well as national, on the potential for the development of "superbugs' by which is usually meant pathogenic bacteria resistant to all available antibiotics. Two of the genera most often thought to fall into this category are the staphylococci (MRSA or Methicillin Resistant Staphylococcus aureus) and the enterococci (VRE or Vancomycin Resistant Enterococci) and although this article concentrates on the staphylococci the two share much in the way of transmissible genes.19979161125
479520.9999Epidemiology and mechanisms of glycopeptide resistance in enterococci. PURPOSE OF REVIEW: This review updates epidemiologic trends and our understanding of glycopeptide resistance in enterococci. RECENT FINDINGS: Colonization and infection rates with vancomycin resistant enterococci continue to increase throughout the world while factors contributing to this rise continue to be defined. While no interventions exist to eradicate colonization, infection control procedures are cost effective and decrease the prevalence of vancomycin resistant enterococcal colonization and infection. New molecular methods show great promise in strengthening our ability to detect colonization with these bacteria. Furthermore, our understanding of the origin of vancomycin resistant enterococci continues to grow. Paenibacillus species found in soil have been found to carry homologues of vanA-associated glycopeptide resistance genes found in enterococci. Also, additional evidence supports previous data that VanB-associated resistance may have been horizontally transferred from gastrointestinal tract bacteria to enterococci. Finally, glycopeptide resistance has been transferred to methicillin-resistant Staphylococcus aureus in clinical practice on several occasions. SUMMARY: The prevalence of vancomycin resistant enterococci will likely continue to increase. Implementation of infection control strategies, in conjunction with deployment of advanced technologies for detection of vancomycin resistant enterococci, may curb this rise. The emergence of vancomycin resistant S. aureus is of concern.200516258324
479730.9999Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination.19989777517
475340.9999Vancomycin-resistant enterococci. Enterococci, a part of normal gut flora, are not particularly pathogenic organisms in humans. For example, they do not cause respiratory tract infections. The most frequent enterococcal infections are urinary tract infections. Despite their lack of pathogenicity, enterococci have emerged as significant nosocomial pathogens in the United States and elsewhere. Enterococci are formidable pathogens because of their resistance to antimicrobial agents. Enterococci are intrinsically resistant to beta-lactam agents and aminoglycosides and were the first bacteria to acquire vancomycin resistance. Infection control measures have been far from effective at preventing the dissemination of vancomycin-resistant enterococci in the hospital. Therapy for infections due to vancomycin-resistant enterococci presents real challenges. Most isolates remain susceptible to nitrofurantoin, but this agent is useful only for urinary tract infections. The greatest threat posed by vancomycin-resistant enterococci is the potential to transfer their resistance genes to more pathogenic gram-positive bacteria, which could produce truly frightening pathogens.19989597252
475450.9999Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria.200717659211
479460.9999Resistance to antibiotics used in dermatological practice. The increased prevalence of bacterial resistance is one of the major problems of medicine today. Antibiotic resistance can be defined as the situation where the minimal inhibitory concentration is greater than the concentration obtainable in vivo. Resistance genes are easily transferred among bacteria, especially bacteria on skin and mucous membranes. In dermatological patients the most important resistance problems are found among staphylococci, Propionibacterium acnes and, to some extent, streptococci. Staphylococcus aureus strains have developed worldwide resistance to penicillin due to betalactamase production in > 90% of cases, and methicillin resistance is now a major problem with resistance levels of > 50% in certain areas of the world. These resistant strains are often multiresistant, and include resistance to erythromycin and tetracycline, with resistance to quinolone developing rapidly. Group A streptococci are still susceptible to penicillin, but increasing problems with erythromycin and tetracycline have been reported. After treatment with both systemic and oral antibiotics, P. acnes develops resistance in more than 50% of cases, and it is estimated that one in four acne patients harbours strains resistant to tetracycline, erythromycin, and clindamycin. To limit the development of antibiotic resistance, it is necessary to establish an antibiotic policy (prescription rules, reimbursement strategy, development of both national and local guidelines, and limitations on non-medical use). Clinicians also need access to rapid diagnostic methods, including resistance testing. This may provide further data for surveillance systems, reporting both antibiotic consumption and resistance levels. The involvement of clinical doctors in teaching and research in this area is probably the most important aspect, along with their involvement in the formulation of national and local guidelines. In the future we may consider it more important to ensure that future patients can be offered antibiotic treatment, rather than focusing on the patient presenting today.19989990406
475270.9998Antibiotic resistance in gram-positive bacteria: epidemiological aspects. The emergence and spread of antibiotic resistance in gram-positive bacterial pathogens has become an increasing problem. There has been a dramatic increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. This is mainly due to the clonal dissemination of certain epidemic multiply-resistant strains, for example, those of MRSA and S. pneumoniae, as well as to the spread of resistance genes as exemplified by those causing glycopeptide resistance in enterococci.199910511391
479680.9998The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae.19989684651
394790.9998Human health hazard from antimicrobial-resistant enterococci in animals and food. The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans. The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant animal enterococci should be disregarded as a human health hazard. On the basis of review of the literature, we find that neither the results provided by molecular typing that classify enterococci as host-specific organisms nor the occurrence of specific nosocomial clones of enterococci provide reasons to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association.200616941376
4310100.9998Pathogenicity and drug resistance of animal streptococci responsible for human infections. Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.202133750514
4798110.9998Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA.200818811239
4750120.9998A Review of Detection Methods for Vancomycin-Resistant Enterococci (VRE) Genes: From Conventional Approaches to Potentially Electrochemical DNA Biosensors. Vancomycin-resistant Enterococci (VRE) genes are bacteria strains generated from Gram-positive bacteria and resistant to one of the glycopeptides antibiotics, commonly, vancomycin. VRE genes have been identified worldwide and exhibit considerable phenotypic and genotypic variations. There are six identified phenotypes of vancomycin-resistant genes: VanA, VanB, VanC, VanD, VanE, and VanG. The VanA and VanB strains are often found in the clinical laboratory because they are very resistant to vancomycin. VanA bacteria can pose significant issues for hospitalized patients due to their ability to spread to other Gram-positive infections, which changes their genetic material to increase their resistance to the antibiotics used during treatment. This review summarizes the established methods for detecting VRE strains utilizing traditional, immunoassay, and molecular approaches and then focuses on potential electrochemical DNA biosensors to be developed. However, from the literature search, no information was reported on developing electrochemical biosensors for detecting VRE genes; only the electrochemical detection of vancomycin-susceptible bacteria was reported. Thus, strategies to create robust, selective, and miniaturized electrochemical DNA biosensor platforms to detect VRE genes are also discussed.202336832060
3946130.9998Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world.201728587316
4596140.9998Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. OBJECTIVES: This review summarizes the literature on the role of virulence and antimicrobial resistance genes of Staphylococcus aureus in bovine mastitis, focusing on the association between these characteristics and their implications for public and animal health. CONCLUSIONS: There is the possibility of antimicrobial resistance gene exchange among different bacteria, which is of serious concern in livestock husbandry, as well as in the treatment of human staphylococcal infections.202032603906
4336150.9998Antibiotic Resistance in Bacteria-A Review. A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as "foodborne pathoges" isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.202236009947
4318160.9998Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance.199610879217
4800170.9998Human infections caused by glycopeptide-resistant Enterococcus spp: are they a zoonosis? Following the detection of glycopeptide-resistant enterococci (GRE) in 1986 and their subsequent global dissemination during the 1990s, many studies have attempted to identify the reservoirs and lines of resistance transmission as a basis for intervention. The eradication of reservoirs and the prevention of GRE spread is of major importance for two reasons: (i) the emergence of high-level glycopeptide resistance in invasive enterococcal clinical isolates that are already multiresistant, has left clinicians with therapeutic options that are only at the experimental stage; and (ii) the resistance genes may spread to more virulent bacterial species such as Staphylococcus aureus, Streptococcus pneumoniae and Clostridium difficile. VanA-type strains, resistant to high levels of both vancomycin and teicoplanin, are the most commonly encountered enterococci with acquired glycopeptide resistance in humans. A widespread VanA-type GRE reservoir was detected early in farm animals that were exposed to the glycopeptide growth-promoter avoparcin. Numerous studies have provided indirect evidence for the transfer of VanA-type GRE and their resistance determinants from animal reservoirs to humans. The data collected have expanded our understanding of the promiscuous nature of antibiotic resistance, and have provided the groundwork for logical decision-making with the objective of deterring the dissemination of resistant bacteria and of their resistance genes.200111688531
3951180.9998Diversity and genetic lineages of environmental staphylococci: a surface water overview. Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.202032949464
4211190.9998Monitoring of antimicrobial resistance among food animals: principles and limitations. Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance are essential to determine the most important areas for intervention and to monitor the effects of interventions. When designing a monitoring programme it is important to decide on the purpose of the programme. Thus, there are major differences between programmes designed to detect changes in a national population, individual herds or groups of animals. In addition, programmes have to be designed differently according to whether the aim is to determine changes in resistance for all antimicrobial agents or only the antimicrobial agents considered most important in relation to treatment of humans. In 1995 a continuous surveillance for antimicrobial resistance among bacteria isolated from food animals was established in Denmark. Three categories of bacteria, indicator bacteria, zoonotic bacteria and animal pathogens are continuously isolated from broilers, cattle and pigs and tested for susceptibility to antimicrobial agents used for therapy and growth promotion by disc diffusion or minimal inhibitory concentration determinations. This programme will only detect changes on a national level. However, isolating the bacteria and testing for several antimicrobial agents will enable us to determine the effect of linkage of resistance. Since 1995 major differences in the consumption pattern of different antimicrobial agents have occurred in Denmark. The Danish monitoring programme has enabled us to determine the effect of these changes on the occurrence of resistance. The Danish monitoring is, however, not suited to determine changes on a herd level or to detect emergence of new types of resistance only occurring at a low level.200415525370