Combating vancomycin resistance in bacteria: targeting the D-ala-D-ala dipeptidase VanX. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
479001.0000Combating vancomycin resistance in bacteria: targeting the D-ala-D-ala dipeptidase VanX. In the past 20 years, vancomycin and other glycopeptide antibiotics have been administered to patients with Streptococcal and Staphylococcal infections that were resistant to all other antibiotics or to patients who were allergic to penicillins and cephalosporins. After extensive use of vancomycin and other glycopeptide antibiotics in humans, several strains of Enterococcus have developed high-level vancomycin resistance (collectively called VRE, vancomycin-resistant Enterococcus), and this resistance phenotype has spread to other organisms. The spread of vancomycin resistance to other pathogens and, potentially, to bacterial strains on the CDC's bioterrorism watch list is a major biomedical concern. Bacteria most often become resistant to vancomycin by acquiring a transposon containing genes that encode for a number of proteins, five of which are essential for the high-level resistance phenotype. The five essential gene products are called VanR, VanS, VanH, VanA, and VanX. Previous studies have shown that the inactivation of VanX results in an organism that is sensitive to vancomycin and that VanX is an excellent inhibitor target. In this review the known inhibitors and structural and mechanistic properties of VanX will be discussed. These data will be used to offer suggestions for novel, rationally-designed or -redesigned inhibitors, which could potentially be used in combination with existing glycopeptide antibiotics as a treatment for vancomycin-resistant bacterial infections.200616789876
479610.9998The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae.19989684651
479820.9998Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA.200818811239
479530.9998Epidemiology and mechanisms of glycopeptide resistance in enterococci. PURPOSE OF REVIEW: This review updates epidemiologic trends and our understanding of glycopeptide resistance in enterococci. RECENT FINDINGS: Colonization and infection rates with vancomycin resistant enterococci continue to increase throughout the world while factors contributing to this rise continue to be defined. While no interventions exist to eradicate colonization, infection control procedures are cost effective and decrease the prevalence of vancomycin resistant enterococcal colonization and infection. New molecular methods show great promise in strengthening our ability to detect colonization with these bacteria. Furthermore, our understanding of the origin of vancomycin resistant enterococci continues to grow. Paenibacillus species found in soil have been found to carry homologues of vanA-associated glycopeptide resistance genes found in enterococci. Also, additional evidence supports previous data that VanB-associated resistance may have been horizontally transferred from gastrointestinal tract bacteria to enterococci. Finally, glycopeptide resistance has been transferred to methicillin-resistant Staphylococcus aureus in clinical practice on several occasions. SUMMARY: The prevalence of vancomycin resistant enterococci will likely continue to increase. Implementation of infection control strategies, in conjunction with deployment of advanced technologies for detection of vancomycin resistant enterococci, may curb this rise. The emergence of vancomycin resistant S. aureus is of concern.200516258324
443440.9998Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. Vancomycin, a natural glycopeptide antibiotic, was used as the antibiotic of last resort for the treatment of multidrug-resistant Gram-positive bacterial infections. However, almost 30 years after its use, resistance to vancomycin was first reported in 1986 in France. This became a major health concern, and alternative treatment strategies were urgently needed. New classes of molecules, including semisynthetic antibacterial compounds and newer generations of the previously used antibiotics, were developed. Semisynthetic derivatives of vancomycin with enhanced binding affinity, membrane disruption ability, and lipid binding properties have exhibited promising results against both Gram-positive and Gram-negative bacteria. Various successful approaches developed to overcome the acquired resistance in Gram-positive bacteria, intrinsic resistance in Gram-negative bacteria, and other forms of noninherited resistance to vancomycin have been discussed in this Perspective.201930404451
443550.9998Bacterial resistance to the cyclic glycopeptides. Cyclic-glycopeptide antibiotics, such as vancomycin and teicoplanin, have been almost uniformly active against pathogenic Gram-positive bacteria since their discovery in the 1950s. Resistance is now emerging among enterococci and staphylococci by acquisition of novel genes or by mutation, respectively. The mechanism of resistance for enterococci appears to be synthesis of an altered cell-wall precursor with lower affinity for the antibiotics.19947850206
479760.9997Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination.19989777517
478970.9997Antimicrobial resistance gene delivery in animal feeds. Avoparcin, a glycopeptide antimicrobial agent related to vancomycin, has been used extensively as a growth promoter in animal feeds for more than 2 decades, and evidence has shown that such use contributed to the development of vancomycin-resistant enterococci. A cluster that includes three genes, vanH, vanA, and vanX, is required for high-level resistance to glycopeptides. In the vancomycin producer Amycolatopsis orientalis C329.2, homologs of these genes are present, suggesting an origin for the cluster. We found substantial bacterial DNA contamination in animal feed-grade avoparcin. Furthermore, nucleotide sequences related to the cluster vanHAX are present in this DNA, suggesting that the prolonged use of avoparcin in agriculture led to the uptake of glycopeptide resistance genes by animal commensal bacteria, which were subsequently transferred to humans.200415200859
483480.9997A retrospective view of beta-lactamases. The discovery of a penicillinase (later shown be a beta-lactamase) 50 years ago in Oxford came from the thought that the resistance of many Gram-negative bacteria to Fleming's penicillinase might be due to their production of a penicillin-destroying enzyme. The emergence of penicillinase-producing staphylococci in the early 1950s, particularly in hospitals, raised the question whether the medical value of penicillin would decline. The introduction of new semi-synthetic penicillins and cephalosporins in the 1960s began to reveal many beta-lactamases distinguishable by their different substrate profiles. In this period it was established that genes encoding beta-lactamases from Gram-negative bacilli could be carried from one organism to another on plasmids and also that penicillin inhibited a transpeptidase involved in bacterial cell wall synthesis. During the last two decades a number of these enzymes have been purified and the genes encoding them have been cloned. Much has now been learned, with the aid of powerful modern techniques, about their structures, their active sites, their relationship to penicillin-sensitive proteins in bacteria and to their likely evolution. Further knowledge may contribute to a more rational approach to chemotherapy in this area. Experience suggests that a need for new substances will continue.19911875234
479290.9997Antibiotic resistance in the staphylococci. There has been much interest in the media, international as well as national, on the potential for the development of "superbugs' by which is usually meant pathogenic bacteria resistant to all available antibiotics. Two of the genera most often thought to fall into this category are the staphylococci (MRSA or Methicillin Resistant Staphylococcus aureus) and the enterococci (VRE or Vancomycin Resistant Enterococci) and although this article concentrates on the staphylococci the two share much in the way of transmissible genes.19979161125
4754100.9997Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria.200717659211
4422110.9997Diversity among multidrug-resistant enterococci. Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge.19989452397
8849120.9997Attenuating the Selection of Vancomycin Resistance Among Enterococci through the Development of Peptide-Based Vancomycin Antagonists. The emergence and spread of multidrug resistant (MDR) pathogens with acquired resistance to almost all available antimicrobial agents has severely threatened the international healthcare community over the last two decades. The last resort antibiotic vancomycin is critical for treatment of several of these pathogens; howeverc vancomycin resistance is spreading due to the undesired accumulation of IV vancomycin in the colon post-treatment. This accumulation exerts selective pressure upon members of the colonic microflora, including Enterococci, which possess vancomycin resistance genes. To ensure the continual effectiveness of vancomycin in the clinical setting by preventing the spread of antibiotic resistance, it is crucial to develop strategies that reduce selective pressure on the colonic microflora while allowing vancomycin to maintain its desired activity at the site of infection. Herein we report that modification of the native l-Lys-d-Ala-d-Ala vancomycin binding site can be used to produce peptides with the ability to competitively bind vancomycin, reducing its activity against susceptible Enterococci. Moreover, several modifications to the N-termini of the native tripeptide have produced compounds with enhanced vancomycin binding activity, including several analogs that were designed to covalently bind vancomycin, thereby acting as suicide inhibitors. Finally, in a mixed culture of susceptible and resistant bacteria, a single lead compound was found to protect high ratios of susceptible bacteria from vancomycin over the course of a week-long period, preventing the selection for vancomycin-resistant Enterococci. These findings demonstrate the ability of these peptides as potential therapeutic adjuvants for counteracting the undesired accumulation of colonic vancomycin, allowing for protection of the colonic microflora.202032946213
4441130.9997Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (e.g., beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa--are reviewed to illustrate the varied ways in which resistant bacteria develop.200616735149
4442140.9997Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa-are reviewed to illustrate the varied ways in which resistant bacteria develop.200616813980
4415150.9997Staphylococcal resistance to streptogramins and related antibiotics. Streptogramin and related antibiotics are mixtures of two compounds, A and B (e.g. Dalfopristin and Quinupristin), particularly against Gram-positive bacteria. Staphylococci resistant to these mixtures are always resistant to the A compounds but are not necessarily resistant to the B compounds. Resistance to A compounds and to the mixtures is conferred by acetyltransferases or ATP-binding proteins via unknown mechanisms. Several genes encoding each of the two categories of protein have been characterized and regularly detected on plasmids. Genes encoding lactonases, which inactivate B compounds, have been occasionally detected on these plasmids. Staphylococci which harbour plasmids conferring resistance to A compounds should not be treated with the mixtures even if they appear susceptible in vitro. Indeed, susceptibility to the mixtures of staphylococci carrying resistance to A compounds has often been attributed to partial loss of the plasmids conferring this resistance. When staphylococci are constitutively resistant to B compounds, the in vitro activities of the mixtures should be evaluated, because they are better correlated than MICs with their efficacy in therapy.199817092802
4393160.9997Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution. Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.202539762552
4898170.9997Antibiotics and bacterial resistance. A few elements of genetic basis for this relationship. In the preantibiotic era, many people died of bacterial infections caused by such pathogens as Staphylococcus aureus and Streptococcus pyogenes, Streptococcus pneumoniae and Mycobacterium tuberculosis. Antibiotics have reduced the mortality from infectious diseases but not the prevalence of these diseases. It was not long after the clinical introduction of the first antibiotics in the 1950s that the first reports of bacterial resistance began to appear. Use, and often abuse or misuse, of antimicrobial agents has encouraged the evolution of bacteria toward resistance, resulting often in therapeutic failure. In the beginning, new antibiotics have always appeared in plenty of time to provide new cures for diseases caused by resistant bacterial pathogens. Also, some clinically important groups of bacteria showed no signs of major increases in resistance. For example, S. pneumoniae strains remained susceptible to penicillin long after other bacteria had become resistant to it. Recent developments of bacteria resistance to antibiotics are indeed disquieting.19958993117
9798180.9997Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Antimicrobial resistance in bacteria is frightening, especially resistance in Gram-negative Bacteria (GNB). In 2017, the World Health Organization (WHO) published a list of 12 bacteria that represent a threat to human health, and among these, a majority of GNB. Antibiotic resistance is a complex and relatively old phenomenon that is the consequence of several factors. The first factor is the vertiginous drop in research and development of new antibacterials. In fact, many companies simply stop this R&D activity. The finding is simple: there are enough antibiotics to treat the different types of infection that clinicians face. The second factor is the appearance and spread of resistant or even multidrug-resistant bacteria. For a long time, this situation remained rather confidential, almost anecdotal. It was not until the end of the 1980s that awareness emerged. It was the time of Vancomycin-Resistance Enterococci (VRE), and the threat of Vancomycin-Resistant MRSA (Methicillin-Resistant Staphylococcus aureus). After this, there has been renewed interest but only in anti-Gram positive antibacterials. Today, the threat is GNB, and we have no new molecules with innovative mechanism of action to fight effectively against these bugs. However, the war against antimicrobial resistance is not lost. We must continue the fight, which requires a better knowledge of the mechanisms of action of anti-infectious agents and concomitantly the mechanisms of resistance of infectious agents.201931470632
4803190.9997Antimicrobial resistance and resistance transfer in anaerobic. A review. A changing antimicrobial susceptibility pattern of anaerobic bacteria has been noted over the past decade. This paper reviews the mechanisms by which these organisms have become resistant to the selected antibiotics and reviews recent data demonstrating that anaerobic bacteria possess systems for transferring resistance determinants. Within Bacteroides there is widespread resistance to penicillins, cephalosporins and tetracycline compounds while there have been sporadic reports of resistance to clindamycin, cefoxitin, chloramphenicol and metronidazole. Transfer of resistance to penicillin, tetracycline and clindamycin has been demonstrated.19846377471