# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4782 | 0 | 1.0000 | Genome characterization, pathogenicity, and evaluation of therapeutics of Klebsiella aerogenes in Bombyx larvae infection model. Antibiotic resistance against human pathogenic bacteria is a global problem and the issue is becoming increasingly serious. Klebsiella aerogenes, a Gram-negative pathogen, is usually found in soil and water, but there are increasing number of reports in on isolation of antibiotic-resistant strains of it. Here, we report the draft genome of a food-borne Klebsiella aerogenes strain isolated from street food of Dhaka, Bangladesh. The WGS analysis revealed the presence of a number of virulence genes and antibiotic-resistance genes. Using the infection model of the larvae of the silk moth, Bombyx mori, we show that the K. aerogenes strain killed larvae within 72 h of injection into the hemolymph (blood) or midgut. Although the strain showed resistance to ampicillin in vitro among the antibiotics tested, it showed sensitivity to ampicillin in vivo in Bombyx larvae. Direct injection of aqueous extracts of hog plum or Indian gooseberry into the midgut of larvae infected with K. aerogenes increased larval survival rate to ~ 75% after 72 h. These results indicate that Bombyx larvae could be used to carry out in vivo screening of plant extracts with potential therapeutic effects against pathogenic bacteria like K. aerogenes. | 2025 | 40221642 |
| 4783 | 1 | 0.9996 | Helicobacter pylori may survive ampicillin treatment in the remnant stomach. Helicobacter pylori (H. pylori) is a Gram-negative curved rod-like or spiral bacterium that chronically infects the human gastric mucosa, and is a major risk factor for gastritis, gastric and duodenal ulcer and adenocarcinoma of the stomach. After partial gastrectomy, some patients may have persistent H. pylori infection for five years or more. In this study, we detected three bacteria, i.e., Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli, in the gastric juice of patients with a remnant stomach. Some of these bacteria produced beta-lactamase. These findings are potentially important since such bacteria could provide H. pylori with the chance to acquire drug resistance and to transfer drug resistance genes. This could be one reason why H. pylori is difficult to eradicate in the remnant stomach. | 2002 | 12139018 |
| 4817 | 2 | 0.9996 | Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates. | 2019 | 30142035 |
| 5978 | 3 | 0.9996 | Evidences of gentamicin resistance amplification in Klebsiella pneumoniae isolated from faeces of hospitalized newborns. The intestinal microbiota, a barrier to the establishment of pathogenic bacteria, is also an important reservoir of opportunistic pathogens. It plays a key role in the process of resistance-genes dissemination, commonly carried by specialized genetic elements, like plasmids, phages, and conjugative transposons. We obtained from strains of enterobacteria, isolated from faeces of newborns in a university hospital nursery, indication of phenotypical gentamicin resistance amplification (frequencies of 10(-3) to 10(-5), compatible with transposition frequencies). Southern blotting assays showed strong hybridization signals for both plasmidial and chromosomal regions in DNA extracted from variants selected at high gentamicin concentrations, using as a probe a labeled cloned insert containing aminoglycoside modifying enzyme (AME) gene sequence originated from a plasmid of a Klebsiella pneumoniae strain previously isolated in the same hospital. Further, we found indications of inactivation to other resistance genes in variants selected under similar conditions, as well as, indications of co-amplification of other AME markers (amikacin). Since the intestinal environment is a scenario of selective processes due to the therapeutic and prophylactic use of antimicrobial agents, the processes of amplification of low level antimicrobial resistance (not usually detected or sought by common methods used for antibiotic resistance surveillance) might compromise the effectiveness of antibiotic chemotherapy. | 1999 | 10585658 |
| 5977 | 4 | 0.9996 | Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available. | 2010 | 20401584 |
| 5759 | 5 | 0.9996 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 2507 | 6 | 0.9996 | Epidemiology of resistance to diaminopyrimidines. Resistance to trimethoprim emerged in Enterobacteriaceae and later in other Gram-negative and Gram-positive bacteria within two years of the clinical introduction of the drug. Resistance is borne in many different replicons often present in multiply-resistant epidemic bacteria. The incidence of trimethoprim resistance is highly variable, depending upon methodology, type of patients, local epidemiology: this can be illustrated by the high variation of trimethoprim resistance among Salmonella, Shigella or MRSA in various countries and by the incidence of resistance in penicillin-resistant Streptococcus pneumoniae. | 1993 | 8195837 |
| 5841 | 7 | 0.9996 | Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions. BACKGROUND: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. AIM: This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. METHODOLOGY: An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. RESULTS: Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions' induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. CONCLUSION: This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella. | 2024 | 39599826 |
| 5695 | 8 | 0.9996 | Competition assays between ESBL-producing E. coli and K. pneumoniae isolates collected from Lebanese elderly: An additional cost on fitness. The dissemination of Multi Drug Resistant Organisms (MDROs) is one of the major public health problems addressed nowadays. High fecal carriage rates of MDR Enterobacteriaceae were reported from Lebanese nursing homes. Studies have shown that the acquisition of resistance genes by bacteria might confer a fitness cost detected as a decrease in the frequency of these bacteria as compared to sensitive isolates. In this study, the competitive growth of MDR Enterobacteriaceae isolated from elderly is assessed. Sensitive and ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates were identified. Inter-species in-vitro competition assays were conducted in different combinations. ESBL-producing K. pneumoniae presented a fitness cost when competing against sensitive E. coli. On the other hand, resistant E. coli only showed a fitness cost when growing in presence of two sensitive K. pneumoniae isolates. These results suggest that ESBL-production genes in E. coli and K. pneumoniae may confer a fitness cost that leads to the decrease in frequency of these bacteria in interspecies competitions. Culturing bacteria in a medium with more diverse isolates can provide better insights into bacterial competition and resistance dynamics, which can be exploited in the search for alternative therapeutic approaches towards the colonization of resistant bacteria. | 2018 | 28988774 |
| 5842 | 9 | 0.9996 | Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces. | 2021 | 34064924 |
| 4738 | 10 | 0.9996 | Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization. | 2025 | 38767682 |
| 4677 | 11 | 0.9996 | Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains. | 2019 | 31399643 |
| 4815 | 12 | 0.9996 | The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. When choosing antibiotics to treat bacterial infections, it is assumed that the susceptibility of the target bacteria to an antibiotic is reflected by laboratory estimates of the minimum inhibitory concentration (MIC) needed to prevent bacterial growth. A caveat of using MIC data for this purpose is heteroresistance, the presence of a resistant subpopulation in a main population of susceptible cells. We investigated the prevalence and mechanisms of heteroresistance in 41 clinical isolates of the pathogens Escherichia coli, Salmonella enterica, Klebsiella pneumoniae and Acinetobacter baumannii against 28 different antibiotics. For the 766 bacteria-antibiotic combinations tested, as much as 27.4% of the total was heteroresistant. Genetic analysis demonstrated that a majority of heteroresistance cases were unstable, with an increased resistance of the subpopulations resulting from spontaneous tandem amplifications, typically including known resistance genes. Using mathematical modelling, we show how heteroresistance in the parameter range estimated in this study can result in the failure of antibiotic treatment of infections with bacteria that are classified as antibiotic susceptible. The high prevalence of heteroresistance with the potential for treatment failure highlights the limitations of MIC as the sole criterion for susceptibility determinations. These results call for the development of facile and rapid protocols to identify heteroresistance in pathogens. | 2019 | 30742072 |
| 5693 | 13 | 0.9996 | Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure. | 2013 | 23129055 |
| 2506 | 14 | 0.9996 | High-level gentamicin resistance in Enterococcus: microbiology, genetic basis, and epidemiology. Antibiotic resistance is an ever-increasing problem in enterococci. These bacteria are remarkable in their ability to acquire and disseminate antibiotic resistance genes by a variety of routes. Since first described in 1979, high-level resistance to gentamicin (MIC, greater than 2,000 micrograms/mL) has spread worldwide and has been responsible for serious infections. Resistance is plasmid-mediated and due to aminoglycoside-modifying enzymes. High-level gentamicin resistance indicates that there will be no synergistic bactericidal activity with penicillin-gentamicin combinations. The epidemiology of nosocomial enterococcal infections is remarkably similar to that of nosocomial infections caused by methicillin-resistant staphylococci and by multidrug-resistant gram-negative bacilli. The most likely way these resistant bacteria are spread among hospital patients is via transient carriage on the hands of hospital personnel. Patient-to-patient and interhospital transmission of strains has been reported recently. However, clonal dissemination is not the cause of the increased frequency of resistant strains, since gentamicin resistance appears in a variety of different conjugative and nonconjugative plasmids in Enterococcus. | 1990 | 2117300 |
| 4857 | 15 | 0.9995 | The emergence of bacterial resistance and its influence on empiric therapy. The discovery of antimicrobial agents had a major impact on the rate of survival from infections. However, the changing patterns of antimicrobial resistance caused a demand for new antibacterial agents. Within a few years of the introduction of penicillin, the majority of staphylococci were resistant to that drug. In the 1960s the production of the semisynthetic penicillins provided an answer to the problem of staphylococcal resistance. In the early 1960s most Escherichia coli were susceptible to the new beta-lactam antibiotic ampicillin; by the end of that decade, plasmid-mediated beta-lactamase resistance was found in 30%-50% of hospital-acquired E. coli. Use of certain agents resulted in the selection of bacteria, such as Klebsiella, that are intrinsically resistant to ampicillin. The original cephalosporins were stable to beta-lactamase, but the use of these agents was in part responsible for the appearance of infections due to Enterobacter species, Citrobacter species, and Pseudomonas aeruginosa. These bacteria, as well as Serratia, were resistant to many of the available beta-lactam agents. Aminoglycosides initially provided excellent activity against most of the facultative gram-negative bacteria. However, the widespread dissemination of the genes that cause production of the aminoglycoside-inactivating enzymes altered the use of those agents. Clearly, the evolution of bacterial resistance has altered the prescribing patterns for antimicrobial agents. Knowledge that beta-lactam resistance to ampicillin or cephalothin is prevalent is causing physicians to select as empiric therapy either a combination of two or more agents or agents to which resistance is uncommon. The new cephalosporins offer a broad spectrum of anti-bacterial activity coupled with low toxicity. However, physicians must closely follow the changing ecology of bacteria when these agents are used, because cephalosporins can also select bacteria resistant to themselves and thereby abolish their value as empiric therapy. | 1983 | 6342103 |
| 4731 | 16 | 0.9995 | Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. The use of antibiotics with semen extender appears to be a practical solution to minimise bacterial growth in fresh boar semen preservation. Unfortunately, the excessive use of antibiotics promotes antimicrobial resistance (AMR). This becomes a worldwide concern due to the antimicrobial resistance genes transmitted to animals, environment, and humans. Probiotics are one of the alternative methods to reduce antibiotic use. They could inhibit pathogenic bacteria by producing antimicrobial substances in cell free supernatants (CFS). Nevertheless, there is no comprehensive study undertaken on inhibitory activity against pathogenic bacteria isolated from boar semen origin. Our study investigated the efficacy of CFS produced from selected probiotics: Bacillus spp., Enterococcus spp., Weissella spp., Lactobacillus spp., and Pediococcus spp. inhibiting pathogenic bacteria isolated from fresh boar semen. Besides, the semen-origin pathogenic bacteria are subjected to identification, antimicrobial resistance genes detection, and antibiotic susceptibility test (AST). Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis are the most common pathogens identified in boar semen with resistance to numerous antibiotics used in pig industry. The CFS with its antimicrobial peptides and/or bacteriocin constituent derived from selected probiotics could inhibit the growth of pathogenic bacteria carrying antimicrobial resistance genes (mcr-3 and int1 genes). The inhibition zones for Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis provided more efficient results in the CFS derived from Lactobacillus spp. and Pediococcus spp. than those of the CFS produced from Enterococcus spp., Weissella spp. and Bacillus spp., respectively. It is worth noted that as the incubation time increased, the antibacterial activity decreased conversely. Our results on CFS with its antimicrobial peptides and/or bacteriocin constituent inhibits semen-origin pathogenic bacteria guide the direction as a promising alternative method used in the semen extender preservation of the pig industry. | 2023 | 37046067 |
| 4722 | 17 | 0.9995 | Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract. | 2019 | 30938219 |
| 6266 | 18 | 0.9995 | Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis. | 2012 | 23022568 |
| 4786 | 19 | 0.9995 | Novel Antimicrobial Target in Acinetobacter Baumannii. BACKGROUND: Resistance to multiple drugs is one of the biggest challenges in managing infectious diseases. Acinetobacter baumannii is considered a nosocomial infection. According to the multiple roles of the toxin-antitoxin system, this system can be considered an antimicrobial target in the presence of bacteria. With the impact on bacterial toxin, it can be used as a new antibacterial target. The purpose of this study was to determine the mazEF genes as a potent antimicrobial target in A. baumannii clinical isolates. METHODS: The functionality of mazEF genes was evaluated by qPCR in fifteen A. baumannii clinical isolates. Then, the mazE locus was targeted by peptide nucleic acid (PNA). RESULTS: The results showed a significant difference in the mean number of copies of mazF gene in normal and stress conditions. Also, we found that at a concentration of 15 µM of PNA the bacteria were killed and confirmed by culture on LB agar. CONCLUSIONS: This research is the first step in introducing mazEF TA loci as a sensitive target in A. baumannii. However, more studies are needed to test the effectiveness in vivo. In addition, the occurrence and potential for activation of the TA system, mazEF in other pathogenic bacteria should be further investigated. | 2022 | 35536074 |