Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
477701.0000Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. The emergence of antibiotic-resistant microorganisms is a significant concern in global health. Antibiotic resistance is attributed to various virulent factors and genetic elements. This study investigated the virulence factors of Staphylococcus aureus to create an mRNA-based vaccine that could help prevent antibiotic resistance. Distinct strains of the bacteria were selected for molecular identification of virulence genes, such as spa, fmhA, lukD, and hla-D, which were performed utilizing PCR techniques. DNA extraction from samples of Staphylococcus aureus was conducted using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, which was confirmed and visualized using a gel doc; 16S rRNA was utilized to identify the bacterial strains, and primers of spa, lukD, fmhA, and hla-D genes were employed to identify the specific genes. Sequencing was carried out at Applied Bioscience International (ABI) in Malaysia. Phylogenetic analysis and alignment of the strains were subsequently constructed. We also performed an in silico analysis of the spa, fmhA, lukD, and hla-D genes to generate an antigen-specific vaccine. The virulence genes were translated into proteins, and a chimera was created using various linkers. The mRNA vaccine candidate was produced utilizing 18 epitopes, linkers, and an adjuvant, known as RpfE, to target the immune system. Testing determined that this design covered 90% of the population conservancy. An in silico immunological vaccine simulation was conducted to verify the hypothesis, including validating and predicting secondary and tertiary structures and molecular dynamics simulations to evaluate the vaccine's long-term viability. This vaccine design may be further evaluated through in vivo and in vitro testing to assess its efficacy.202337189657
477810.9995DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Identification of bacteria causing tissue infections can be comprehensive and, in the cases of non- or slow-growing bacteria, near impossible with conventional methods. Performing shotgun metagenomic sequencing on bacterial DNA extracted directly from the infected tissue may improve time to diagnosis and targeted treatment considerably. However, infected tissue consists mainly of human DNA (hDNA) which hampers bacterial identification. In this proof of concept study, we present a modified version of the Ultra-Deep Microbiome Prep kit for DNA extraction procedure, removing additional human DNA. Tissue biopsies from 3 patients with orthopedic implant-related infections containing varying degrees of Staphylococcus aureus were included. Subsequent DNA shotgun metagenomic sequencing using Oxford Nanopore Technologies' (ONT) MinION platform and ONTs EPI2ME WIMP and ARMA bioinformatic workflows for microbe and antibiotic resistance genes identification, respectively. The modified DNA extraction protocol led to an additional ~10-fold reduction of human DNA while preserving S. aureus DNA. Including the DNA sequencing and bioinformatics analyses, the presented protocol has the potential of identifying the infection-causing pathogen in infected tissue within 7 hours after biopsy. However, due to low number of S. aureus reads, positive identification of antibiotic resistance genes was not possible.202032076089
507520.9995Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.202439409516
507930.9994Development of a Rapid, Culture-Free, Universal Microbial Identification System Using Internal Transcribed Spacer Targeting Primers. The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes. To overcome the deficits of culture-based methods, we have developed a rapid universal bacterial identification system. The platform uses a unique universal polymerase chain reaction primer set that targets the internal transcribed spacer regions between conserved bacterial genes, creating a distinguishable amplicon signature for every bacterial species. Bioinformatic simulation demonstrates that nearly every bacteria in a set of 45 commonly isolated pathogenic species can be uniquely identified using this approach. We experimentally confirmed these predictions on a representative set of pathogenic bacterial species. We further showed that the system can determine the corresponding concentration of each pathogen. Finally, we validated performance in clinical urinary tract infection samples.202539503259
507640.9994Diagnostic microarray for human and animal bacterial diseases and their virulence and antimicrobial resistance genes. Rapid diagnosis and treatment of disease is often based on the identification and characterization of causative agents derived from phenotypic characteristics. Current methods can be laborious and time-consuming, often requiring many skilled personnel and a large amount of lab space. The objective of our study was to develop a spotted microarray for rapid identification and characterization of bacterial pathogens and their antimicrobial resistance genes. Our spotted microarray consists of 489 70mer probes that detect 40 bacterial pathogens of medical, veterinary and zoonotic importance (including 15 NIAID Category A, B and C pathogens); associated genes that encode resistance for antimicrobial and metal resistance; and DNA elements that are important for horizontal gene transfer among bacteria. High specificity and reliability of the microarray was achieved for bacterial pathogens of animal and human importance by validating MDR pathogenic bacteria as pure cultures or by following their inoculation in complex and highly organic sample matrices, such as soil and manure.201020035807
510550.9994Emerging insights of Staphylococcus spp. in human mastitis. Human mastitis represents a prevalent and intricate condition that significantly challenges breastfeeding women, often exacerbated by pathogenic bacteria such as Staphylococcus aureus. A deep understanding of the interplay between human mastitis, the breast milk microbiome, and causative agents is imperative. This understanding must focus on the bacterium's virulence and resistance genes, which critically influence the severity and persistence of mastitis. Current methods for detecting these genes, including Polymerase Chain Reaction (PCR), 16S rRNA gene sequencing, shotgun metagenomic sequencing, multiplex PCR, whole genome sequencing (WGS), loop-mediated isothermal amplification (LAMP), CRISPR-based assays, and microarray technology, are vital in elucidating bacterial pathogenicity and resistance profiles. However, advanced attention is required to refine diagnostic techniques, enabling earlier detection and more effective therapeutic approaches for human mastitis. The involvement of Staphylococcus aureus in human infection should be a prime focus, especially in women's health, which deals directly with neonates. Essential virulence genes in Staphylococcus species are instrumental in infection mechanisms and antibiotic resistance, serving as potential targets for personalized treatments. Thus, this review focuses on Staphylococcusaureus-induced mastitis, examining its virulence factors and detection techniques to advance diagnostic and therapeutic strategies.202540349998
462960.9994Screening and in silico characterization of prophages in Helicobacter pylori clinical strains. The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we developed a method to identify prophages in H. pylori genomes aiming at their future use in therapy. A polymerase chain reaction (PCR)-based technique tested five primer pairs on 74 clinical H. pylori strains. After the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. This study allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Overall, we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.202539368610
494170.9994BacCapSeq: a Platform for Diagnosis and Characterization of Bacterial Infections. We report a platform that increases the sensitivity of high-throughput sequencing for detection and characterization of bacteria, virulence determinants, and antimicrobial resistance (AMR) genes. The system uses a probe set comprised of 4.2 million oligonucleotides based on the Pathosystems Resource Integration Center (PATRIC) database, the Comprehensive Antibiotic Resistance Database (CARD), and the Virulence Factor Database (VFDB), representing 307 bacterial species that include all known human-pathogenic species, known antimicrobial resistance genes, and known virulence factors, respectively. The use of bacterial capture sequencing (BacCapSeq) resulted in an up to 1,000-fold increase in bacterial reads from blood samples and lowered the limit of detection by 1 to 2 orders of magnitude compared to conventional unbiased high-throughput sequencing, down to a level comparable to that of agent-specific real-time PCR with as few as 5 million total reads generated per sample. It detected not only the presence of AMR genes but also biomarkers for AMR that included both constitutive and differentially expressed transcripts.IMPORTANCE BacCapSeq is a method for differential diagnosis of bacterial infections and defining antimicrobial sensitivity profiles that has the potential to reduce morbidity and mortality, health care costs, and the inappropriate use of antibiotics that contributes to the development of antimicrobial resistance.201830352937
508180.9994Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. The effectiveness of recommended first-line therapies for Helicobacter pylori infections is decreasing due to the occurrence of resistance to metronidazole and/or clarithromycin. Quadruple therapies, which include tetracycline and a bismuth salt, are useful alternative regimens. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA genes (rrnA and rrnB) affecting nucleotides 926 to 928, are already emerging and can impair the efficacies of such second-line regimens. Here, we describe a novel real-time PCR for the detection of 16S rRNA gene mutations associated with tetracycline resistance. Our PCR method was able to distinguish between wild-type strains and resistant strains exhibiting single-, double, or triple-base-pair mutations. The method was applicable both to DNA extracted from pure cultures and to DNA extracted from fresh or frozen H. pylori-infected gastric biopsy samples. We therefore conclude that this real-time PCR is an excellent method for determination of H. pylori tetracycline resistance even when live bacteria are no longer available.200516048919
508790.9993Sensitive colorimetric detection of antibiotic resistant Staphylococcus aureus on dairy farms using LAMP with pH-responsive polydiacetylene. Rapidly and accurately detecting antibiotic-resistant pathogens in agriculture and husbandry is important since these represent a major threat to public health. While much attention has been dedicated to detecting now-common resistant bacteria, such as methicillin-resistant Staphylococcus aureus, fewer methods have been developed to assess resistance against macrolides in Staphylococcus aureus (SA). Here, we report a visual on-site detection system for macrolide resistant SA in dairy products. First, metagenomic sequencing in raw milk, cow manure, water and aerosol deposit collected from dairy farms around Tianjin was used to identify the most abundant macrolide resistance gene, which was found to be the macB gene. In parallel, SA housekeeping genes were screened to allow selective identification of SA, which resulted in the selection of the SAOUHSC_01275 gene. Next, LAMP assays targeting the above-mentioned genes were developed and interpreted by agarose gel electrophoresis. For on-site application, different pH-sensitive colorimetric LAMP indicators were compared, which resulted in selection of polydiacetylene (PDA) as the most sensitive candidate. Additionally, a semi-quantitative detection could be realized by analyzing the RGB information via smartphone with a LOD of 1.344 × 10(-7) ng/μL of genomic DNA from a milk sample. Finally, the proposed method was successfully carried out at a real farm within 1 h from sample to result by using freeze-dried reagents and portable devices. This is the first instance in which PDA is used to detect LAMP products, and this generic read-out system can be expanded to other antibiotic resistant genes and bacteria.202336327562
4632100.9993Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux. BACKGROUND: Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. RESULTS: The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). CONCLUSION: The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.200818844996
4178110.9993Efficacy and food safety considerations of poultry competitive exclusion products. Competitive exclusion (CE) products are anaerobic cultures of bacteria that are applied to poultry hatchlings to establish a protective enteric microbiota that excludes intestinal colonization by human food-borne pathogens. For safety of the poultry flock and human consumers, the identities of bacteria in CE products need to be known. A CE product is a culture of intestinal contents from adult chickens. It may be microbiologically defined by analysis of bacteria isolated from the culture, but many bacteria are hard to reliably isolate, identify, and characterize with conventional techniques. Sequence analysis of 16S ribosomal RNA (rRNA) genes may be more reliable than conventional techniques to identify CE bacteria. Bacteria in CE products may contain antimicrobial drug resistance and virulence mechanisms that could be transferred to the enteric bacteria of the food animal and to the human consumer. Detection methods for specific antimicrobial drug resistance and virulence genes and the integrase genes of conjugative transposons, mostly utilizing PCR technology, are being developed that can be applied to assess these risks in CE bacteria. With improvements in efficacy, bacterial identification, and detection and control of the possible risks of gene transfer, CE product technology can be made a more effective food safety tool.200617039457
5111120.9993Antimicrobial Resistance Prediction for Gram-Negative Bacteria via Game Theory-Based Feature Evaluation. The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp.201931597945
4675130.9993Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. ABSTRACT: In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L).202133320937
4674140.9993Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.201526147573
4631150.9993Genome Analysis of an Enterococcal Prophage, Entfac.MY. BACKGROUND: Bacteriophages are bacterial parasites. Unlike lytic bacteriophages, lysogenic bacteriophages do not multiply immediately after entering the host cells and may integrate their genomes into the bacterial genomes as prophages. Prophages can include various phenotypic and genotypic effects on the host bacteria. Enterococcus spp. are Gram-positive bacteria that cause infections in humans and animals. In recent decades, these bacteria have become resistant to various antimicrobials, including vancomycin. The aim of this study was to analyze genome of an enterococcal prophage. METHODS: In this study, Enterococcus faecium EntfacYE was isolated from biological samples and its genome was analyzed using next-generation sequencing method. RESULTS: Overall, 254 prophage genes were identified in the bacterial genome. The prophage included 39 housekeeping, 41 replication and regulation, 80 structural and packaging, and 48 lysis genes. Moreover, 46 genes with unknown functions were identified. All genes were annotated in DNA Data Bank of Japan. CONCLUSION: In general, most prophage genes were linked to packaging and structure (31.5%) gene group. However, genes with unknown functions included a high proportion (18.11%), which indicated necessity of further analyses. Genomic analysis of the prophages can be effective in better understanding of their roles in development of bacterial resistance to antibiotics. Moreover, identification and study of prophages can help researchers develop genetic engineering tools and novel infection therapies.202236061127
4750160.9993A Review of Detection Methods for Vancomycin-Resistant Enterococci (VRE) Genes: From Conventional Approaches to Potentially Electrochemical DNA Biosensors. Vancomycin-resistant Enterococci (VRE) genes are bacteria strains generated from Gram-positive bacteria and resistant to one of the glycopeptides antibiotics, commonly, vancomycin. VRE genes have been identified worldwide and exhibit considerable phenotypic and genotypic variations. There are six identified phenotypes of vancomycin-resistant genes: VanA, VanB, VanC, VanD, VanE, and VanG. The VanA and VanB strains are often found in the clinical laboratory because they are very resistant to vancomycin. VanA bacteria can pose significant issues for hospitalized patients due to their ability to spread to other Gram-positive infections, which changes their genetic material to increase their resistance to the antibiotics used during treatment. This review summarizes the established methods for detecting VRE strains utilizing traditional, immunoassay, and molecular approaches and then focuses on potential electrochemical DNA biosensors to be developed. However, from the literature search, no information was reported on developing electrochemical biosensors for detecting VRE genes; only the electrochemical detection of vancomycin-susceptible bacteria was reported. Thus, strategies to create robust, selective, and miniaturized electrochemical DNA biosensor platforms to detect VRE genes are also discussed.202336832060
4639170.9993Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof.202337762186
4775180.9993Safety assessment of dairy microorganisms: the Lactobacillus genus. Lactobacilli are Gram positive rods belonging to the Lactic Acid Bacteria (LAB) group. Their phenotypic traits, such as each species' obligate/facultative, homo/heterofermentation abilities play a crucial role in souring raw milk and in the production of fermented dairy products such as cheese, yoghurt and fermented milk (including probiotics). An up to date safety analysis of these lactobacilli is needed to ensure consumer safety. Lactobacillus genus is a heterogeneous microbial group containing some 135 species and 27 subspecies, whose classification is constantly being reshuffled. With the recent use of advanced molecular methods it has been suggested that the extreme diversity of the Lactobacillus genomes would justify recognition of new subgeneric divisions. A combination of genotypic and phenotypic tests, for example DNA-based techniques and conventional carbohydrate tests, is required to determine species. Pulsed-Field gel Electrophoresis (PFGE) has been successfully applied to strains of dairy origin and is the most discriminatory and reproducible method for differentiating Lactobacillus strains. The bibliographical data support the hypothesis that the ingestion of Lactobacillus is not at all hazardous since lactobacillemia induced by food, particularly fermented dairy products, is extremely rare and only occurs in predisposed patients. Some metabolic features such as the possible production of biogenic amines in fermented products could generate undesirable adverse effects. A minority of starter and adjunct cultures and probiotic Lactobacillus strains may exceptionally show transferable antibiotic resistance. However, this may be underestimated as transferability studies are not systematic. We consider that transferable antibiotic resistance is the only relevant cause for caution and justifies performing antibiotic-susceptibility assays as these strains have the potential to serve as hosts of antibiotic-resistance genes, with the risk of transferring these genes to other bacteria. However, as a general rule, lactobacilli have a high natural resistance to many antibiotics, especially vancomycin, that is not transferable. Safety assessment requirements for Lactobacillus strains of technological interest should be limited to an antibiotic profile and a study to determine whether any antibiotic resistance(s) of medical interest detected is (or are) transferable. This agrees with the recent EFSA proposal suggesting attribution of a QPS status for 32 selected species of lactobacilli.200817889388
4636190.9993Functional screening of antibiotic resistance genes from a representative metagenomic library of food fermenting microbiota. Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest.201425243126