# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4764 | 0 | 1.0000 | Effect of lipopeptide extracted from Bacillus licheniformis on the expression of bap and luxI genes in multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Recently, opportunistic pathogens like Acinetobacter baumannii and Pseudomonas aeruginosa have caused concern due to their ability to cause antibiotic resistance in weakened immune systems. As a result, researchers are always seeking efficient antimicrobial agents to tackle this issue. The hypothesis of the recent study was that probiotic products derived from bacteria would be effective in reducing drug resistance in other bacteria. This research aimed to investigate the antimicrobial properties of probiotic products from various bacterial strains, including Lactobacillus rhamnosus, Pediococcus acidilactisi, Bacillus coagulans, Bacillus subtilis, and Bacillus licheniformis. These were tested against multi-drug-resistant (MDR) standard strains A. baumannii and P. aeruginosa. B. licheniformis was found to be the most effective probiotic strain, possessing the LanA and LanM lantibiotic genes. The lipopeptide nature of the probiotic product was confirmed through high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) techniques. The anti-biofilm and antimicrobial properties of this probiotic were measured using an SEM electron microscope and minimum inhibitory concentration (MIC) test. Real-time PCR (qPCR) was used to compare the expression of bap and luxI genes, which are considered virulence factors of drug-resistant bacteria, before and after treatment with antimicrobial agents. The MIC results showed that the probiotic product prevented the growth of bacteria at lower concentrations compared to antibiotics. In addition, the ΔΔCqs indicated that gene expression was significantly down-regulated following treatment with the obtained probiotic product. It was found that B. licheniformis probiotic products could reduce drug resistance in other bacteria, making it a potential solution to antibiotic resistance. | 2023 | 37907777 |
| 4765 | 1 | 0.9999 | Enhancing the Antibacterial Impact of Lipopeptide Extracted from Bacillus licheniformis as a Probiotic against MDR Acinetobacter baumannii. BACKGROUND: The antibiotic resistance of microorganisms is escalating rapidly. Infections caused by opportunistic pathogens in immunocompromised individuals have prompted researchers to seek for potent and safe antibacterial agents. The purpose of this investigation was to explore the suppression of virulence gene expression, specifically the pga operon genes responsible in biofilm formation in Acinetobacter baumannii, through the utilization of metabolites obtained from probiotic bacteria. METHODS: To assess the antimicrobial properties, standard strains of five probiotic bacteria were tested against a standard strain of multidrug-resistant (MDR) A. baumannii employing the agar gel diffusion technique. Following the identification of the most potent probiotic strain (Bacillus licheniformis), the existence of its LanA and LanM genes was confirmed using the polymerase chain reaction (PCR) test. High-performance liquid chromatography (HPLC) and fourier-transform infrared spectroscopy (FTIR) techniques were employed to identify the intended metabolite, which was found to be a lipopeptide nature. The minimum inhibitory concentration (MIC) values and anti-biofilm activity of the targeted metabolite were determined using a dilution method in 96-well microplates and field emission scanning electron microscopy (FE-SEM). Real-time PCR (qPCR) was utilized for comparing the expression of pga operon genes, including pgaABCD, in A. baumannii pre- and post-exposure to the derived lipopeptide. RESULTS: The MIC results indicated that the probiotic product inhibited the growth of A. baumannii at concentrations lower than those needed for conventional antibiotics. Furthermore, it was observed that the desired genes' expression decreased due to the effect of this substance. CONCLUSIONS: This research concludes that the B. licheniformis probiotic product could be a viable alternative for combating drug resistance in A. baumannii. | 2024 | 38812307 |
| 4767 | 2 | 0.9997 | The impact of probiotic cell-free metabolites in MDR Pseudomonas aeruginosa: antibacterial properties and effect on antibiotic resistance genes expression. There is a significant demand for novel antibacterial agents against multidrug-resistant (MDR) gram-negative bacteria. Recently, probiotics have been noted for their antibacterial properties against various pathogens. This study aimed to investigate the effects of probiotic cell-free supernatants on MDR Pseudomonas aeruginosa. Clinical isolates demonstrating the highest degree of antibiotic resistance were chosen, and the antibacterial effect of probiotic metabolites was evaluated using an agar-well diffusion assay. In addition, the effect of probiotics on the expression of resistance genes was evaluated using real-time PCR. The CFS was assessed using GC-MS to determine the antibacterial compounds. The supernatants inhibited the growth of the isolates (P < 0.0001); however, there was no noticeable difference in the effectiveness of the probiotics. In addition, the supernatants decreased the expression levels of mexD, mexB, mexF, and ampC, and an increase in oprD was observed in some groups. After the assessment of Lactobacillus acidophilus by GC-MS, antibacterial compounds, such as acetamide, nonadecane, 9-methyl, and tetradecane, were determined. Our findings showed that probiotic metabolites can effectively inhibit the growth of MDR P. aeruginosa. Gene expression analysis also revealed that the mechanism of antibacterial action was most likely related to the regulation of efflux pumps. | 2023 | 37742315 |
| 4731 | 3 | 0.9997 | Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. The use of antibiotics with semen extender appears to be a practical solution to minimise bacterial growth in fresh boar semen preservation. Unfortunately, the excessive use of antibiotics promotes antimicrobial resistance (AMR). This becomes a worldwide concern due to the antimicrobial resistance genes transmitted to animals, environment, and humans. Probiotics are one of the alternative methods to reduce antibiotic use. They could inhibit pathogenic bacteria by producing antimicrobial substances in cell free supernatants (CFS). Nevertheless, there is no comprehensive study undertaken on inhibitory activity against pathogenic bacteria isolated from boar semen origin. Our study investigated the efficacy of CFS produced from selected probiotics: Bacillus spp., Enterococcus spp., Weissella spp., Lactobacillus spp., and Pediococcus spp. inhibiting pathogenic bacteria isolated from fresh boar semen. Besides, the semen-origin pathogenic bacteria are subjected to identification, antimicrobial resistance genes detection, and antibiotic susceptibility test (AST). Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis are the most common pathogens identified in boar semen with resistance to numerous antibiotics used in pig industry. The CFS with its antimicrobial peptides and/or bacteriocin constituent derived from selected probiotics could inhibit the growth of pathogenic bacteria carrying antimicrobial resistance genes (mcr-3 and int1 genes). The inhibition zones for Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis provided more efficient results in the CFS derived from Lactobacillus spp. and Pediococcus spp. than those of the CFS produced from Enterococcus spp., Weissella spp. and Bacillus spp., respectively. It is worth noted that as the incubation time increased, the antibacterial activity decreased conversely. Our results on CFS with its antimicrobial peptides and/or bacteriocin constituent inhibits semen-origin pathogenic bacteria guide the direction as a promising alternative method used in the semen extender preservation of the pig industry. | 2023 | 37046067 |
| 4766 | 4 | 0.9996 | Evaluation of ethanol and EDTA concentrations in the expression of biofilm-producing smf-1, rpfF genes in XDR clinical isolates of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia is able to cause infections in immunocompromised patients, and the treatment of this opportunistic pathogen is complicated due to its virulence factors, antibiotic resistance, and the ability of the bacteria to produce biofilm. The main goals of this study were to assess the susceptibility of extensively drug-resistant (XDR) isolates to ethanol and EDTA, and evaluating the synergistic effect of these disinfectants, and also survey the effect of exposure to sub-inhibitory concentrations of ethanol and EDTA on the expression of biofilm-producing smf-1, rpfF genes. RESULTS: The results showed that EDTA significantly increased the effectiveness of the ethanol and have a synergistic effect. All of the 10 XDR isolates included in the current study harbored smf-1 and rpfF genes and produced biofilm. After exposure to MIC, sub-MIC, synergism, and sub-synergism of ethanol and EDTA, the expression of smf-1 and rpfF genes was repressed significantly. CONCLUSION: In the current study, it was indicated that the expression of biofilm-producing genes was repressed when bacteria are exposed to different concentrations of ethanol and EDTA. Future studies should include more complex microbial communities residing in the hospitals, and more disinfectants use in hospitals. Expression of other virulence genes in different conditions is suggested. | 2023 | 37775770 |
| 4732 | 5 | 0.9996 | A Comparison of Antibiotics' Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms. BACKGROUND: A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics. OBJECTIVE: The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms. METHODS: E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media). RESULTS: A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form. CONCLUSION: It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin. | 2025 | 39092644 |
| 4786 | 6 | 0.9996 | Novel Antimicrobial Target in Acinetobacter Baumannii. BACKGROUND: Resistance to multiple drugs is one of the biggest challenges in managing infectious diseases. Acinetobacter baumannii is considered a nosocomial infection. According to the multiple roles of the toxin-antitoxin system, this system can be considered an antimicrobial target in the presence of bacteria. With the impact on bacterial toxin, it can be used as a new antibacterial target. The purpose of this study was to determine the mazEF genes as a potent antimicrobial target in A. baumannii clinical isolates. METHODS: The functionality of mazEF genes was evaluated by qPCR in fifteen A. baumannii clinical isolates. Then, the mazE locus was targeted by peptide nucleic acid (PNA). RESULTS: The results showed a significant difference in the mean number of copies of mazF gene in normal and stress conditions. Also, we found that at a concentration of 15 µM of PNA the bacteria were killed and confirmed by culture on LB agar. CONCLUSIONS: This research is the first step in introducing mazEF TA loci as a sensitive target in A. baumannii. However, more studies are needed to test the effectiveness in vivo. In addition, the occurrence and potential for activation of the TA system, mazEF in other pathogenic bacteria should be further investigated. | 2022 | 35536074 |
| 4768 | 7 | 0.9996 | Attenuating the virulence of the resistant superbug Staphylococcus aureus bacteria isolated from neonatal sepsis by ascorbic acid, dexamethasone, and sodium bicarbonate. BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies. | 2022 | 36348266 |
| 4738 | 8 | 0.9996 | Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization. | 2025 | 38767682 |
| 6074 | 9 | 0.9995 | Beneficial properties of lactic acid bacteria naturally present in dairy production. BACKGROUND: Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics. RESULTS: Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose. CONCLUSIONS: The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties. | 2018 | 30567551 |
| 4677 | 10 | 0.9995 | Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains. | 2019 | 31399643 |
| 4740 | 11 | 0.9995 | Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics. Antimicrobial resistance (AMR) is a growing public health threat caused by the widespread overuse of antibiotics. Bacteria with antibiotic resistance may acquire resistance genes from soil or water. Endogenous hydrogen sulfide (H(2)S) production in bacteria confers antibiotic tolerance in many, suggesting a universal defense mechanism against antibiotics. In this study, we isolated and identified soil-based antibiotic-resistant bacteria collected from contaminated areas. An antibiotic-resistant bacterium was identified as non-endogenous-H(2)S-producing, allowing us to examine the effect of exogenous H(2)S on its resistance mechanism. Therefore, we demonstrated that different classes of antibiotic resistance can be reverted by employing H(2)S with antibiotics like ampicillin and gentamicin. Methods like Kirby-Bauer Disk-Diffusion, Scanning Electron Microscopy, and Flow Cytometer analysis were performed to assess the antibacterial activity of H(2)S with ampicillin and gentamicin. The antioxidative efficiency of H(2)S was evaluated using the DCFH-DA (ROS) test, as well as lipid peroxidation, and LDH activity. These were further confirmed with enzymatic and non-enzymatic (SOD, CAT, GST, and GSH) antioxidant studies. These findings support H(2)S as an antibiotic-potentiator, causing bacterial membrane damage, oxidative stress, and disrupting DNA and proteins. Thus, supplying exogenous H(2)S can be a good agent for the reversal of Antibiotic resistance. | 2024 | 39579197 |
| 4734 | 12 | 0.9995 | Antibiotic resistance gene-free probiont administration to tilapia for growth performance and Streptococcus agalactiae resistance. BACKGROUND AND AIM: The rapid development of aquaculture as a major food sector is accompanied by challenges, including diseases that affect tilapia farming worldwide. One such infectious disease caused by Streptococcus agalactiae poses a serious threat to tilapia populations. Probiotics have emerged as a potentially safe preventive measure against S. agalactiae infection. However, antimicrobial resistance from antibiotic-resistant bacteria remains a concern because it can lead to the spread of resistant bacteria and serve as a reservoir of antibiotic-resistant genes in fishes and the surrounding environment. This study aimed to identify candidate probiotic bacteria capable of promoting tilapia growth, providing resistance to S. agalactiae infection, devoid of potential pathogenicity, and free from antibiotic resistance genes. Subsequently, the performance of these probiotic candidates in tilapia was evaluated. MATERIALS AND METHODS: Lactococcus garvieae, Priestia megaterium, Bacterium spp., Bacillus megaterium, Bacillus subtilis, and Bacillus pumilus were examined to assess their antibacterial properties, hemolytic patterns, and antibiotic resistance genes. We used the specific primers tetA, tetB, tetD, tetE, tetO, tetQ, ermB, and qnrS that were used for antibiotic resistance gene detection. In vivo probiotic efficacy was evaluated by administering probiotic candidates in tilapia feed at a concentration of 1 × 10(6) colonies/mL/50 g of feed over a 60-day maintenance period. Resistance to S. agalactiae infection was observed for 14 days after the challenge test. RESULTS: Lactococcus garvieae, P. megaterium, and Bacterium spp. were identified as promising probiotic candidates among the bacterial isolates. On the other hand, B. megaterium, B. subtilis, and B. pumilus carried resistance genes and exhibited a β hemolytic pattern, rendering them unsuitable as probiotic candidates. The selected probiotic candidates (L. garvieae, P. megaterium, and Bacterium spp.) demonstrated the potential to enhance tilapia growth, exhibited no pathogenic tendencies, and were free from antibiotic resistance genes. Supplementation with L. garvieae and Bacterium spp. enhanced tilapia resistance to S. agalactiae infection, whereas P. megaterium supplementation showed an insignificant survival rate compared with controls after the challenge test period. CONCLUSION: Probiotics, particularly L. garvieae, P. megaterium, and Bacterium spp., enhance growth and resistance against S. agalactiae infection, without harboring antibiotic resistance genes. Selecting probiotic candidates based on antibiotic resistance genes is essential to ensure the safety of fish, the environment, and human health. | 2023 | 38328352 |
| 4816 | 13 | 0.9995 | Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs. | 2024 | 38489041 |
| 4769 | 14 | 0.9995 | Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. INTRODUCTION: Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. METHODS: The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. RESULTS AND DISCUSSION: In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model. | 2024 | 39310784 |
| 4735 | 15 | 0.9995 | Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BACKGROUND: Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. RESULTS: The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. CONCLUSION: This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains. | 2023 | 37377461 |
| 4729 | 16 | 0.9995 | Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BACKGROUND: Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. RESULTS: Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. CONCLUSIONS: The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation. | 2019 | 31703621 |
| 4730 | 17 | 0.9995 | Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures. High-pressure processing is one of the most promising novel food preservation methods that is increasingly used in the food industry. Its biggest advantage is that it is a nonthermal method that ensures the microbiological safety of the product while maintaining other features, including nutritional value. If products made with starter cultures are subjected to high-pressure treatment, the process parameters should be selected so as not to eliminate all microorganisms in the product. The aim of the study was to investigate if carrying antibiotic resistance genes affects the survival of lactic acid bacteria (Lactococcus and the former Lactobacillus) strains during high-pressure treatment. Survival was assessed using the plate count method. It was shown that the strains carrying antibiotic resistance genes showed a lower survival to high pressure. This might be explained by the phenomenon of fitness cost, consisting in a reduced adaptation of antibiotic-resistant strains related to metabolic expenditure. The obtained results indicate the need for further research in this field and the need to select food processing parameters depending on the strains intentionally included in the food. | 2022 | 35681924 |
| 6285 | 18 | 0.9995 | Triton X-100 counteracts antibiotic resistance of Enterococcus faecalis: An in vitro study. OBJECTIVES: The high prevalence of antibiotic-resistant bacteria poses a threat to the global public health. The appropriate use of adjuvants to restore the antimicrobial activity of antibiotics against resistant bacteria could be an effective strategy for combating antibiotic resistance. In this study, we investigated the counteraction of Triton X-100 (TX-100) and the mechanisms underlying the antibiotic resistance of Enterococcus faecalis (E. faecalis). METHODS: Standard, wild-type (WT), and induced antibiotic-resistant E. faecalis strains were used in this study. In vitro antibacterial experiments were conducted to evaluate the antimicrobial activities of gentamicin sulfate and ciprofloxacin hydrochloride in the presence and absence of 0.02 % TX-100 against both planktonic and biofilm bacteria. Transcriptomic and untargeted metabolomic analyses were performed to explore the molecular mechanisms of TX-100 as an antibiotic adjuvant. Additionally, membrane permeability, membrane potential, glycolysis-related enzyme activity, intracellular adenosine triphosphate (ATP), and expression levels of virulence genes were assessed. The biocompatibility of different drug combinations was also evaluated. RESULTS: A substantially low TX-100 concentration improved the antimicrobial effects of gentamicin sulfate or ciprofloxacin hydrochloride against antibiotic-resistant E. faecalis. Mechanistic studies demonstrated that TX-100 increased cell membrane permeability and dissipated membrane potential. Moreover, antibiotic resistance and pathogenicity of E. faecalis were attenuated by TX-100 via downregulation of the ABC transporter, phosphotransferase system (PTS), and ATP supply. CONCLUSIONS: TX-100 enhanced the antimicrobial activity of gentamicin sulfate and ciprofloxacin hydrochloride at a low concentration by improving antibiotic susceptibility and attenuating antibiotic resistance and pathogenicity of E. faecalis. CLINICAL SIGNIFICANCE: These findings provide a theoretical basis for developing new root canal disinfectants that can reduce antibiotic resistance. | 2024 | 38729285 |
| 4724 | 19 | 0.9995 | Transcriptomic analysis of sub-MIC Eugenol exposition on antibiotic resistance profile in Multidrug Resistant Enterococcus faecalis E9.8. The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci. Eugenol treatment irreversibly reduced several antibiotics' minimum inhibitory concentration (MIC), confirmed by kinetic studies for kanamycin, erythromycin, and tetracycline. Furthermore, transcriptomic analysis indicated the reversion of antibiotic resistance through direct and indirect measures, such as down-regulation of genes coding for proteins involved in antibiotic resistance, toxin resistance and virulence factors. Regarding antibiotic resistance genes (ARGs), ten differentially expressed genes (five down-regulated and five up-regulated genes) were related to the main transporter families, which present key targets in antibiotic resistance reversion. Our study thus highlights the importance of considering indirectly related genes as targets for antibiotic resistance reversion besides ARGs sensu stricto. These results allow us to propose using eugenol as an antibiotic resistance reversing agent to be included in disinfectant solutions as an excellent alternative to limit the spread of MDR bacteria and their ARGs in the food chain and the environment. | 2025 | 39827501 |