Research progress on the oxazolidinone drug linezolid resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
475501.0000Research progress on the oxazolidinone drug linezolid resistance. OBJECTIVE: The oxazolidinone drug linezolid is mainly used for severe infections caused by multidrug-resistant Gram-positive bacteria. However, emerging linezolid resistance is aggravating difficulties in the treatment of certain infectious diseases. The objective of this review was to provide a reference for researchers and clinicians to be able to better face together the serious challenge of antimicrobial resistance. MATERIALS AND METHODS: A systematic literature search was performed using PubMed, Web of Science, Google Scholar, and the China National Knowledge Infrastructure (CNKI) database. The articles were scrutinized to extract information on oxazolidinone drug linezolid resistance, and the prevalence of the resistance gene optrA. We reviewed the latest advances in epidemic properties, resistance mechanism, and transfer mechanism of linezolid resistance genes in different isolates isolated from various samples worldwide. RESULTS: Initially, it was thought that linezolid resistance was related to the change in drug target mediated by mutations in the 23S rRNA gene, rplC, rplD, and cfr. optrA was discovered in 2015, and is a gene encoding oxazolidinone resistance, which exists in both plasmids and chromosomes, but mostly plasmids. The emergence of the novel plasmid-borne ABC transporter gene optrA expanded the understanding of the mechanism of linezolid resistance. CONCLUSIONS: At present, the prevalence of linezolid resistance has become increasingly serious. The resistance gene optrA has been reported in Enterococcus, Staphylococcus squirrel and Streptococcus, which indicates that this gene has a strong ability to spread across bacteria, so the prevalence and spread of optrA gene should be monitored carefully.202033015768
459410.9998Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci.201830253132
493020.9998Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone.201829617860
250630.9998High-level gentamicin resistance in Enterococcus: microbiology, genetic basis, and epidemiology. Antibiotic resistance is an ever-increasing problem in enterococci. These bacteria are remarkable in their ability to acquire and disseminate antibiotic resistance genes by a variety of routes. Since first described in 1979, high-level resistance to gentamicin (MIC, greater than 2,000 micrograms/mL) has spread worldwide and has been responsible for serious infections. Resistance is plasmid-mediated and due to aminoglycoside-modifying enzymes. High-level gentamicin resistance indicates that there will be no synergistic bactericidal activity with penicillin-gentamicin combinations. The epidemiology of nosocomial enterococcal infections is remarkably similar to that of nosocomial infections caused by methicillin-resistant staphylococci and by multidrug-resistant gram-negative bacilli. The most likely way these resistant bacteria are spread among hospital patients is via transient carriage on the hands of hospital personnel. Patient-to-patient and interhospital transmission of strains has been reported recently. However, clonal dissemination is not the cause of the increased frequency of resistant strains, since gentamicin resistance appears in a variety of different conjugative and nonconjugative plasmids in Enterococcus.19902117300
475840.9998Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques.201830631384
994950.9998Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. The emergence of the multiresistance gene cfr in staphylococci is of global concern. In addition to conferring resistance to phenicols, lincosamides, pleuromutilins, streptogramin A antibiotics and selected 16-membered macrolides, the cfr gene also confers resistance to the oxazolidinone linezolid. Linezolid is a last-resort antimicrobial agent for the treatment of serious infections in humans caused by resistant Gram-positive bacteria. The cfr gene is often located on plasmids and several cfr-carrying plasmids have been described, which differ in their structure, their size and the presence of additional resistance genes. These plasmids are important vehicles that promote the spread of the cfr gene not only among bacteria of the same species, but also among those of different species and genera. Moreover, the cfr gene has been identified in close proximity to different insertion sequences, which most probably also play an important role in its dissemination. This review summarizes current knowledge on the genetic environment of the multiresistance gene cfr with particular reference to mobile genetic elements and co-located resistance genes that may support its emergence.201323543608
502660.9997Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: a scoping review. Colistin (also known as polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest number of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region.202236000241
492370.9997Genetic Resistance Determinants in Clinical Acinetobacter pittii Genomes. Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to β-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.202235625320
475480.9997Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria.200717659211
547890.9997Selection and maintenance of mobile linezolid-resistance genes and plasmids carrying them in the presence of florfenicol, an animal-specific antimicrobial. Mobile linezolid-resistance genes (optrA, poxtA and cfr) that confer resistance to linezolid and florfenicol have been detected globally in various sources. Linezolid is a last-resort antimicrobial used in human clinical settings, and florfenicol is commonly used in veterinary clinical settings. The present study sought to evaluate the potential of florfenicol in veterinary use to select for linezolid-resistant bacteria. The growth and fitness of linezolid-resistant bacteria harbouring mobile linezolid-resistance genes were assessed in the presence and absence of florfenicol using Enterococcus faecalis and Enterococcus faecium, respectively. The bacterial strains harboured wild and cloning plasmids carrying mobile linezolid-resistance genes, which reduced their susceptibility to linezolid and florfenicol. The acquisition of plasmids carrying mobile linezolid-resistance genes improved bacterial growth in the presence of florfenicol and conferred fitness costs in its absence. Florfenicol imposes a selection pressure on bacteria harbouring plasmids carrying mobile linezolid-resistance genes. Hence, the appropriate use of florfenicol in veterinary clinical settings is important to control the dissemination of mobile linezolid-resistance genes and to ensure the sustained effectiveness of linezolid against multidrug-resistant bacteria, including vancomycin-resistant enterococci in human clinical settings.202540698117
3930100.9997Class 1 integron in staphylococci. As a major concern in public health, methicillin-resistant staphylococci (MRS) still remains one of the most prevalent pathogens that cause nosocomial infections throughout the world and has been recently labeled as a "super bug" in antibiotic resistance. Thus, surveillance and investigation on antibiotic resistance mechanisms involved in clinical MRS strains may raise urgent necessity and utmost significance. As a novel antibiotic resistance mechanism, class 1 integron has been identified as a primary source of antimicrobial resistance genes in Gram-negative organisms. However, most available studies on integrons had been limited within Gram-negative microbes, little is known for clinical Gram-positive bacteria. Based on series studies of systematic integrons investigation in hundreds of staphylococci strains during 2001-2006, this review concentrated on the latest development of class 1 integron in MRS isolates, including summary of prevalence and occurrence of class 1 integron, analysis of correlation between integron and antibiotic resistance, further demonstration of the role integrons play as antibiotic determinants, as well as origin and evolution of integron-associated gene cassettes during this study period.201121258866
4875110.9997An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective. Colistin resistance in bacteria is a growing global issue, given its role as a critical last-resort antibiotic, particularly for treating Gram-negative bacterial infections. Pathogens adopt multiple resistance mechanisms, mediated either by plasmids or chromosomal changes. Some of the most frequently observed strategies include the occurrence of plasmid-borne mobile colistin resistance (mcr) genes, enhanced efflux pump activity, mutations in the regulatory systems, and alterations in the lipid A structure. This article provides an overview of the studies investigating the genetic mechanisms underlying colistin resistance in nosocomial Gram-negative bacteria from India. A total of 37 studies were identified through online searches across various databases, including PubMed, ScienceDirect, and Web of Science. These studies were reviewed to examine bacterial species and their mechanisms of colistin resistance. Over 26 (70.27%) studies were focused on Klebsiella pneumoniae. The most commonly reported mechanism of colistin resistance involved mutations in the two-component systems pmrAB and phoPQ. Plasmid-mediated colistin-resistant mcr genes were identified in 22 studies (18.18%). Four studies reported the overexpression of efflux pump genes as a mechanism of colistin resistance. This article provides a comprehensive summary of these studies, emphasizing the presence of diverse resistance mechanisms across various pathogens. It underscores the necessity for future genomic research on a broader range of pathogens to investigate the prevalence of different mechanisms of colistin resistance in the various regions of India.202540078264
5023120.9997Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOS(R)) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOS(R) type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.202337469601
4757130.9997Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.201424867792
4948140.9997Yersinia pestis antibiotic resistance: a systematic review. Yersinia pestis, the cause of plague and a potential biological weapon, has always been a threatening pathogen. Some strains of Y. pestis have varying degrees of antibiotic resistance. Thus, this systematic review was conducted to alert clinicians to this pathogen's potential antimicrobial resistance. A review of the literature was conducted for experimental reports and systematic reviews on the topics of plague, Y. pestis, and antibiotic resistance. From 1995 to 2021, 7 Y. pestis isolates with 4 antibiotic resistance mechanisms were reported. In Y. pestis 17/95, 16/95, and 2180H, resistance was mediated by transferable plasmids. Each plasmid contained resistance genes encoded within specific transposons. Strain 17/95 presented multiple drug resistance, since plasmid 1202 contained 10 resistance determinants. Strains 16/95 and 2180H showed single antibiotic resistance because both additional plasmids in these strains carried only 1 antimicrobial determinant. Strains 12/87, S19960127, 56/13, and 59/13 exhibited streptomycin resistance due to an rpsl gene mutation, a novel mechanism that was discovered recently. Y. pestis can acquire antibiotic resistance in nature not only via conjugative transfer of antimicrobial-resistant plasmids from other bacteria, but also by gene point mutations. Global surveillance should be strengthened to identify antibiotic-resistant Y. pestis strains by whole-genome sequencing and drug susceptibility testing.202235255676
5481150.9997Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid-the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration-and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.202033102417
5024160.9997Colistin Resistance in Enterobacterales Strains - A Current View. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 - mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.201931880886
4861170.9997The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria.202133913748
4325180.9997Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides.202235884160
4797190.9997Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination.19989777517