# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4736 | 0 | 1.0000 | Evaluation of The Pathogenic Potential of Insecticidal Serratia marcescens Strains to Humans. We observed the death of insect caterpillars of Spodoptera exigua in the laboratory culture line and identified Serratia marcescens as the bacterial causative agent of the insect death. We confirmed that S. marcescens had insecticidal activity against S. exigua and caused high mortality of larvae. The LC(50) values of S. marcescens CFU per 1 cm(2) of insect diet surface were similar for all isolates. Our research reports novel strains with high pesticidal activity as candidates for future research on a new bioinsecticide. As bioinsecticides cannot be harmful to non-target organisms, we determined the pathogenic properties of S. marcescens to humans. We proved the ability of S. marcescens to damage mammalian epithelial cells. All strains had cytopathic effects to Vero cells with a cytotoxic index ranging from 51.2% ± 3.8% to 79.2% ± 4.1%. We found that all of the strains excreted catecholate siderophore - enterobactin. All isolates were resistant to sulfamethoxazole, tobramycin, gentamicin, cefepime, and aztreonam. We did not observe the ESBL phenotype and the integrons' integrase genes. Resistance to sulfamethoxazole was due to the presence of the sul1 or sul2 gene. The use of resistant S. marcescens strains that are pathogenic to humans in plant protection may cause infections difficult to cure and lead to the spread of resistance genes. The results of our study emphasize the necessity of determination of the safety to vertebrates of the bacteria that are proposed to serve as biocontrol agents. The novelty of our study lies in the demonstration of the indispensability of the bacteria verification towards the lack of hazardous properties to humans. We observed the death of insect caterpillars of Spodoptera exigua in the laboratory culture line and identified Serratia marcescens as the bacterial causative agent of the insect death. We confirmed that S. marcescens had insecticidal activity against S. exigua and caused high mortality of larvae. The LC(50) values of S. marcescens CFU per 1 cm(2) of insect diet surface were similar for all isolates. Our research reports novel strains with high pesticidal activity as candidates for future research on a new bioinsecticide. As bioinsecticides cannot be harmful to non-target organisms, we determined the pathogenic properties of S. marcescens to humans. We proved the ability of S. marcescens to damage mammalian epithelial cells. All strains had cytopathic effects to Vero cells with a cytotoxic index ranging from 51.2% ± 3.8% to 79.2% ± 4.1%. We found that all of the strains excreted catecholate siderophore – enterobactin. All isolates were resistant to sulfamethoxazole, tobramycin, gentamicin, cefepime, and aztreonam. We did not observe the ESBL phenotype and the integrons’ integrase genes. Resistance to sulfamethoxazole was due to the presence of the sul1 or sul2 gene. The use of resistant S. marcescens strains that are pathogenic to humans in plant protection may cause infections difficult to cure and lead to the spread of resistance genes. The results of our study emphasize the necessity of determination of the safety to vertebrates of the bacteria that are proposed to serve as biocontrol agents. The novelty of our study lies in the demonstration of the indispensability of the bacteria verification towards the lack of hazardous properties to humans. | 2019 | 31257791 |
| 4738 | 1 | 0.9997 | Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization. | 2025 | 38767682 |
| 4734 | 2 | 0.9997 | Antibiotic resistance gene-free probiont administration to tilapia for growth performance and Streptococcus agalactiae resistance. BACKGROUND AND AIM: The rapid development of aquaculture as a major food sector is accompanied by challenges, including diseases that affect tilapia farming worldwide. One such infectious disease caused by Streptococcus agalactiae poses a serious threat to tilapia populations. Probiotics have emerged as a potentially safe preventive measure against S. agalactiae infection. However, antimicrobial resistance from antibiotic-resistant bacteria remains a concern because it can lead to the spread of resistant bacteria and serve as a reservoir of antibiotic-resistant genes in fishes and the surrounding environment. This study aimed to identify candidate probiotic bacteria capable of promoting tilapia growth, providing resistance to S. agalactiae infection, devoid of potential pathogenicity, and free from antibiotic resistance genes. Subsequently, the performance of these probiotic candidates in tilapia was evaluated. MATERIALS AND METHODS: Lactococcus garvieae, Priestia megaterium, Bacterium spp., Bacillus megaterium, Bacillus subtilis, and Bacillus pumilus were examined to assess their antibacterial properties, hemolytic patterns, and antibiotic resistance genes. We used the specific primers tetA, tetB, tetD, tetE, tetO, tetQ, ermB, and qnrS that were used for antibiotic resistance gene detection. In vivo probiotic efficacy was evaluated by administering probiotic candidates in tilapia feed at a concentration of 1 × 10(6) colonies/mL/50 g of feed over a 60-day maintenance period. Resistance to S. agalactiae infection was observed for 14 days after the challenge test. RESULTS: Lactococcus garvieae, P. megaterium, and Bacterium spp. were identified as promising probiotic candidates among the bacterial isolates. On the other hand, B. megaterium, B. subtilis, and B. pumilus carried resistance genes and exhibited a β hemolytic pattern, rendering them unsuitable as probiotic candidates. The selected probiotic candidates (L. garvieae, P. megaterium, and Bacterium spp.) demonstrated the potential to enhance tilapia growth, exhibited no pathogenic tendencies, and were free from antibiotic resistance genes. Supplementation with L. garvieae and Bacterium spp. enhanced tilapia resistance to S. agalactiae infection, whereas P. megaterium supplementation showed an insignificant survival rate compared with controls after the challenge test period. CONCLUSION: Probiotics, particularly L. garvieae, P. megaterium, and Bacterium spp., enhance growth and resistance against S. agalactiae infection, without harboring antibiotic resistance genes. Selecting probiotic candidates based on antibiotic resistance genes is essential to ensure the safety of fish, the environment, and human health. | 2023 | 38328352 |
| 6073 | 3 | 0.9997 | Molecular Assessment and Validation of the Selected Enterococcal Strains as Probiotics. Probiotics are live microorganisms which confer health benefits to the host. Lactic acid bacteria (LAB) are used as probiotics since decades. Enterococci being the member of LAB have proven probiotic strains; therefore, this study was aimed at finding out the potential probiotic candidates from the pool of locally isolated strains. For initial screening, one hundred and twenty-two strains were selected and subjected to different confirmatory and phenotypic tests to choose the best strains that have potential probiotic criteria, i.e., no potential virulence traits, antibiotic resistance, and having tolerance properties. Keeping this criterion, only eleven strains (n = 11) were selected for further assessment. All virulence traits such as production of hemolysin, gelatinase, biofilm, and DNase were performed and not found in the tested strains. The molecular assessment indicates the presence of few virulence-associated genes in Enterococcus faecalis strains with variable frequency. The phenotypic and genotypic assessments of antibiotic resistance profile indicate that the selected strain was susceptible to ten commonly used antibiotics, and there were no transferrable antibiotic resistance genes. The presence of CRISPR-Cas genes also confirmed the absence of antibiotic resistance genes. Various enterocin-producing genes like EntP, EntB, EntA, and EntQ were also identified in the selected strains which make them promising probiotic lead strains. Different tolerance assays like acid, NaCl, and gastric juice tolerance that mimic host conditions was also evaluated by providing artificial conditions. Cellular adhesion and aggregation properties like auto- and co-aggregation were also checked and their results reflect all in the favor of lead probiotic strains. | 2025 | 37731160 |
| 5672 | 4 | 0.9996 | Antibiotic Resistance, Biofilm Formation, and Presence of Genes Encoding Virulence Factors in Strains Isolated from the Pharmaceutical Production Environment. The spread of bacterial resistance to antibiotics affects various areas of life. The aim of this study was to assess the occurrence of Pseudomonas aeruginosa, and other bacteria mainly from orders Enterobacterales and Staphylococcus in the pharmaceutical production sites, and to characterize isolated strains in the aspects of antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors. Genes encoding selected virulence factors were detected using PCR techniques. Antimicrobial susceptibility testing was applied in accordance with the EUCAST recommendations. A total of 46 P. aeruginosa strains were isolated and 85% strains showed a strong biofilm-forming ability. The qualitative identification of genes taking part in Quorum Sensing system demonstrated that over 89% of strains contained lasR and rhlI genes. An antimicrobial susceptibility testing revealed nine strains resistant to at least one antibiotic, and two isolates were the metallo-β-lactamase producers. Moreover, the majority of P. aeruginosa strains contained genes encoding various virulence factors. Presence of even low level of pathogenic microorganisms or higher level of opportunistic pathogens and their toxic metabolites might result in the production inefficiency. Therefore, the prevention of microbial contamination, effectiveness of sanitary and hygienic applied protocols, and constant microbiological monitoring of the environment are of great importance. | 2021 | 33513933 |
| 4677 | 5 | 0.9996 | Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains. | 2019 | 31399643 |
| 4739 | 6 | 0.9996 | Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. OBJECTIVES: Indirect resistance (IR), the ability of an antibiotic-resistant population of bacteria to protect a susceptible population, has been previously observed for β-lactamase-producing bacteria and associated with antimicrobial treatment failures. Here, we determined whether other resistance determinants could cause IR in the presence of five other classes of antibiotics. METHODS: A test was designed to detect IR and 14 antibiotic resistance genes were tested in the presence of 13 antibiotics from six classes. A bioassay was used to measure the ability of resistance-causing enzymes to decrease the concentration of active antibiotics in the medium. RESULTS: We confirmed IR in the presence of β-lactam antibiotics (ampicillin and mecillinam) when TEM-1A was expressed. We found that bacteria expressing antibiotic-modifying or -degrading enzymes Ere(A), Tet(X2) or CatA1 caused IR in the presence of macrolides (erythromycin and clarithromycin), tetracyclines (tetracycline and tigecycline) and chloramphenicol, respectively. IR was not observed with resistance determinants that did not modify or destroy antibiotics or with enzymes modifying aminoglycosides or degrading fosfomycin. IR was dependent on the resistance enzymes decreasing the concentration of active antibiotics in the medium, hence allowing nearby susceptible bacteria to resume growth once the antibiotic concentration fell below their MIC. CONCLUSIONS: IR was not limited to β-lactamase-producing bacteria, but was also caused by resistant bacteria carrying cytoplasmic antibiotic-modifying or -degrading enzymes that catalyse energy-consuming reactions requiring complex cellular cofactors. Our results suggest that IR is common and further emphasizes that coinfecting agents and the human microflora can have a negative impact during antimicrobial therapy. | 2016 | 26467993 |
| 5674 | 7 | 0.9996 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 4735 | 8 | 0.9996 | Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BACKGROUND: Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. RESULTS: The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. CONCLUSION: This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains. | 2023 | 37377461 |
| 4732 | 9 | 0.9996 | A Comparison of Antibiotics' Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms. BACKGROUND: A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics. OBJECTIVE: The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms. METHODS: E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media). RESULTS: A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form. CONCLUSION: It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin. | 2025 | 39092644 |
| 6074 | 10 | 0.9996 | Beneficial properties of lactic acid bacteria naturally present in dairy production. BACKGROUND: Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics. RESULTS: Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose. CONCLUSIONS: The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties. | 2018 | 30567551 |
| 5671 | 11 | 0.9996 | Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. BACKGROUND: The "One Health" concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance. METHODS: The purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles. RESULTS: The susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, while P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) against K. pneumoniae biofilms and with CIP (40% at 10 × MIC) against P. fluorescens biofilms. DISCUSSION: The results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence. | 2018 | 29910986 |
| 5640 | 12 | 0.9996 | Antibiotic consumption and faecal bacterial susceptibility in surgical in-patients. A one-day prevalence study of resistance of faecal bacteria to 19 antibacterial agents was performed in 144 surgical inpatients. Most of the drug-resistant isolates were of aerobic and anaerobic species commonly seen in infections, which indicates that surveys of faecal flora can yield rapid information on local patterns of drug resistance in pathogens relevant to abdominal infection. In faecal bacteria the drug resistance pattern only weakly reflected the local antibiotic consumption. The amount of administered aminoglycosides was relatively small, and no gentamicin-resistant aerobes were found. Absence of resistance was found also for some of the newer agents not yet in clinical use (aztreonam, latamoxef, norfloxacin), but not for others (ceftazidime, ceftriaxone). Despite heavy use of fosfomycin and metronidazole, resistance had not emerged among aerobic and anaerobic bacteria, respectively. Imipenem was unique in inhibiting growth of all aerobic and anaerobic faecal bacteria, in the studied patients with the single exception of a strain of Enterobacter. | 1987 | 3673450 |
| 5841 | 13 | 0.9996 | Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions. BACKGROUND: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. AIM: This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. METHODOLOGY: An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. RESULTS: Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions' induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. CONCLUSION: This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella. | 2024 | 39599826 |
| 5759 | 14 | 0.9996 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 4675 | 15 | 0.9996 | Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. ABSTRACT: In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L). | 2021 | 33320937 |
| 4723 | 16 | 0.9996 | Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. | 2025 | 39536720 |
| 4676 | 17 | 0.9996 | Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. BACKGROUND AND PURPOSE: Lactobacillus, the most popular probiotic, has recently gained more attention because it is a potential reservoir of antibiotic resistance. This review summarized and discussed the phenotypic-genotypic characteristics of antibiotic resistance. EXPERIMENTAL APPROACH: Google Scholar, PubMed, Web of Science, and Scopus were searched up to February 2022. The inclusion criteria were all studies testing antibiotic resistance of probiotic Lactobacillus strains present in human food supplementation and all human/animal model studies in which transferring antibiotic-resistant genes from Lactobacillus strains to another bacterium were investigated. FINDINGS/RESULTS: Phenotypic and genotypic characterization of Lactobacillus probiotics showed that the most antibiotic resistance was against protein synthesis inhibitors (fourteen studies, 87.5%) and cell wall synthesis inhibitors (ten studies, 62.5%). Nine of these studies reported the transfer of antibiotic resistance from Lactobacillus probiotic as donor species to pathogenic bacteria and mostly used in vitro methods for resistance gene transfer. CONCLUSION AND IMPLICATIONS: The transferability of resistance genes such as tet and erm in Lactobacillus increases the risk of spreading antibiotic resistance. Further studies need to be conducted to evaluate the potential spread of antibiotic resistance traits via probiotics, especially in elderly people and newborns. | 2023 | 37842520 |
| 4726 | 18 | 0.9996 | Overcoming Multidrug Resistance in E. coli and Salmonella Isolates from Nile Tilapia: Synergistic Effects of Novel Antibiotic Combinations. Escherichia coli and Salmonella are significant foodborne zoonotic pathogens, causing serious human illness. The rising global prevalence of antimicrobial resistance (AMR) in these species exacerbates their public health risk, complicating the treatment of bacterial infection. This study investigates its prevalence, resistant genes, and treatment strategy against antibiotic-resistant bacteria, focusing on E. coli and Salmonella isolates from Nile tilapia. Prevalence of E. coli and Salmonella was found to be 32 and 22% respectively. Antibiotic susceptibility testing revealed resistance to five antibiotics in E. coli and four in Salmonella. Physiochemical properties of antibiotic resistance genes (ABRGs) indicated that the TetB gene has the highest aliphatic index in both bacteria, suggesting greater stability. All Bla proteins were hydrophobic as indicated by negative GRAVY values, which may contribute to antibiotic efflux or modification of antibiotic targets. Motif analysis identified functional domains, and cellular localization prediction showed that TetA and TetB genes are primarily expressed in the cell membrane. To combat this resistance, a checkerboard method was used to explore novel antibiotic combinations. For E. coli, one synergistic and two additive combinations were identified, while for Salmonella, two synergistic and one additive combination were effective. These results highlight the importance of regularly evaluating antibiotic combinations to combat resistance and preserve antibiotic efficacy. | 2025 | 40581898 |
| 3395 | 19 | 0.9996 | Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant antibiotics. | 2005 | 15778307 |